ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 4 of 76, ordered by
1827. van Oss, C.J., M.K. Chaudhury, and R.J. Good, “Monopolar surfaces,” Advances in Colloid and Interface Science, 28, 35-64, (1987).
2280. Morra, M., E. Occhiello, and F. Garbassi, “Knowledge about polymer surfaces from contact angle measurements,” Advances in Colloid and Interface Science, 32, 79-116, (Jun 1990).
3018. Tavana, H., and A.W. Neumann, “Recent progress in the determination of solid surface tensions from contact angles,” Advances in Colloid and Interface Science, 132, 1-32, (Mar 2007).
1741. Biederman, H., and Y. Osada, “Plasma chemistry of polymers,” Advances in Polymer Science, 95, 57-109, (1990).
971. Sun, C.Q., D. Zhang, and L.C. Wadsworth, “Corona treatment of polyolefin films - A review,” Advances in Polymer Technology, 18, 171-180, (Apr 1999).
1225. Kravtsov, A., H. Brunig, S. Zhandarov, and R. Beyreuther, “The electret effect in polypropylene fibers treated in a corona discharge,” Advances in Polymer Technology, 19, 312-316, (Oct 2000).
1665. Knospe, A., “Pre-treatment of aluminum with plasma in air,” Aluminum International Today, 19, (Jul 2007).
421. Bernier, M.H., J.E. Klemberg-Sapieha, L. Martinu, and M.R. Wertheimer, “Polymer surface modification by dual-frequency plasma treatment,” in Metallization of Polymers (ACS Symposium Series 440), 147-160, American Chemical Society, Sep 1989.
623. De Coninck, J., “Is there an optimal substrate geometry for wetting (at the microscopic scale)?,” in Interfacial Properties on the Submicrometer Scale (ACS Symposium Series 781), Frommer, J., and R.M. Overney, eds., 24-35, American Chemical Society, Feb 2001.
885. Perz, S.V., C.S. McMillan, and M.J. Owen, “Wettability of fluorosilicone surfaces,” in Fluorinated Surfaces, Coatings, and Film (ACS Symposium Series 787), Castner, D.G., and D.W. Grainger, eds., 112-128, American Chemical Society, Mar 2000.
953. Moore, M.J., “Surface energy measurements and their application to rubber-to-metal bonding,” Presented at The 145th Meeting of the Rubber Division of the American Chemical Society, 1994.
1048. Nowak, S., H.P. Haerri, and L. Schlapbach, “Surface charaterisation and adhesion of plasma treated PP,” in Polymeric Materials Science & Engineering, 437-441,V62, American Chemical Society, 1990.
1055. da Silva, W., A. Entenberg, B. Kahn, T. Debies, and G.A. Takacs, “Adhesion of copper to teflon surfaces modified by vacuum UV photo-oxidation downstream from Ar microwave plasma,” in PMSE Reprints, American Chemical Society, Mar 2004.
1056. Walsh, P.J., and A.J. Lessner, “Measuring small contact angles of sessile drops on low energy substrates by refraction,” in PMSE Reprints, American Chemical Society, Mar 2004.
1081. Park, Y.R., J.M. Song, J.S. Kim, and Y. Lee, “Effects of the number of acid groups on the hydrophilicity of the surface of PS-based ionomers,” in PMSE Preprints, American Chemical Society, Aug 2004.
1082. Rangwalla, H., A. Schwab, B. Yurdumakan, D. Yablon, M.S. Yeganeh, A. Dhinojwala, “Direct evidence of surface heterogeneity as a cause of contact-angle hysteresis,” in PMSE Preprints, American Chemical Society, Aug 2004.
1463. Kitazaki, Y., and T. Hata, “Surface-chemical criteria for optimum adhesion,” in Recent Advances in Adhesion, Lee, L.-H., ed., 65-76, American Chemical Society, Sep 1971.
1480. Fowkes, F.M., and R.F. Gould, eds., Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), American Chemical Society, 1964.
1601. Zisman, W.A., “Relation of the equilibrium contact angle to liquid and solid constitution,” in Contact Angle, Wettability and Adhesion, Fowkes, F.M., and W.A. Zisman, eds., 1+, American Chemical Society, 1964.
1603. Good, R.J., “Theory for the estimation of surface and interfacial energies, VI: Surface energies of some fluorocarbon surfaces from contact angle measurements,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 74-87, American Chemical Society, 1964.
1604. Fowkes, F.M., “Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 99-111, American Chemical Society, 1964.
1605. Johnson, R.E. Jr., and R.H. Dettre, “Contact angle hysteresis, 1: Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 112-135, American Chemical Society, 1964.
1606. Dettre, R.H., and R.E. Johnson Jr., “Contact angle hysteresis, 2: Contact angle measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 136-144, American Chemical Society, 1964.
1607. Huntsberger, J.R., “The relationship between wetting and adhesion,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 180-188, American Chemical Society, 1964.
1608. Sharpe, L.H., and H. Schonhorn, “Surface energetics, adhesion, and adhesive joints,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 189-201, American Chemical Society, 1964.
2216. Yang, W., and N. Sung, “Adhesion promotion through plasma treatment in thermoplastic/rubber systems,” in Proceedings of the ACS Division of Polymer Materials: Science and Engineering, Vol. 62, 0, American Chemical Society, 1990.
2862. Mutchler, J., J. Menkart, and A.M. Schwartz, “Rapid estimation of the critical surface tension of fibers,” in Pesticidal Formulations Research (Advances in Chemistry Vol. 86, 7-14, American Chemical Society, 1969.
526. Markgraf, D.A., “Corona treatment and water-borne technology: Implications for converting polyolefin substrates,” American Ink Maker, 65, 26-62, (1987).
535. Micale, F.J., et al, “The role of wetting, part 2: flexography,” American Ink Maker, 67, 25-35, (Oct 1989).
595. Watson, W.M., “Adhesion to polyethylene with water-based inks,” American Ink Maker, 62, 38-106, (Oct 1984).
1165. Johans, C., I. Palonen, P. Suomalainen, and P.K.J. Kinnunen, “Making surface tension measurement a practical utility for modern industrial R & D,” American Laboratory (News Edition), 37, 14-16, (Dec 2005).
1549. Oller, S., “Printing on plastic,” American Printer, (Nov 2002).
1413. Bardos, L., and H. Barankova, “Radio frequency hollow cathode source for large area cold atmospheric plasma applications,” in Proceedings of the International Conference on Metallurgical Coatings and Thin Films, American Vacuum Society, 2000.
482. Hook, T.H., R.L. Schmitt, and J.A. Gardella Jr., “Analysis of polymer surface structure by low-energy ion scattering spectroscopy,” Analytical Chemistry, 58, 1285-1290, (1986).
455. Dyckerhoff, G.A., P. Sell, and J. Sell, “Influence of interfacial tension on adhesion,” Angewandte Makromolekulare Chemie, 21, 169, (1972).
973. Novak, I., and I. Chodak, “Adhesion of poly(propylene) modified by corona discharge,” Angewandte Makromolekulare Chemie, 260, 47-51, (Nov 1998).
1033. Lin, G., W. Wenig, and J. Petermann, “Influence of thermal treatment on the adhesion of polypropylene/ethylene-propylene copolymer interfaces,” Angewandte Makromolekulare Chemie, 255, 33-36, (Mar 1998).
1267. Steinhauser, H., and G. Ellinghorst, “Corona treatment of isotactic polypropylene in nitrogen and carbon dioxide,” Angewandte Makromolekulare Chemie, 120, 177-191, (Feb 1984).
1277. Seto, F., Y. Muraoka, N. Sakamoto, A. Kishida, and M. Akashi, “Surface modification of synthetic fiber nonwoven fabrics with poly(acrylic acid) chains prepared by corona discharge induced grafting,” Angewandte Makromolekulare Chemie, 266, 56-62, (May 1999).
2557. Quere, D., “Wetting and roughness,” Annual Review of Materials Research, 38, 71-99, (Aug 2008).
We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->