ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 36 of 76, ordered by
1736. Kumagai, H., H. Denbo, N. Fujii, and T. Kobayashi, “Poly(ethylene terephthalate) decomposition process in oxygen plasma: Emission spectroscopic and surface analysis for oxygen-plasma reaction,” J. Vacuum Science and Technology, A22, 1-7, (2004).
Emission spectroscopy was applied to observe the reaction process of poly (ethylene terephthalate) (PET) in an oxygen (O2) plasma generated by a microwave discharge. As the PET was exposed in the O2 plasma flow, light emitted from the PET surface was monitored. In the diagnosis measurement, several emission peaks assigned to the Hα atomic line at 652 nm, Hβ at 486 nm, OH (2Σ→2Π) transition near 244–343 nm and CO (b3 Σ→a3 Σ) near 283–370 nm were observed and measured at various discharge times. These results indicated that after the plasma etching, the PET sample was decomposed by the oxygen plasma reaction, and then, hydrogen abstraction and carbon oxidation processes. We also observed the time profile of oxygen atom, as the atom-emission intensity at 777 nm was monitored. As Hβ atomic and OH molecule lines appeared in the presence of PET, the O atom intensity was significantly reduced. In the surface analysis on Fourier transform infrared and x-ray photoelectron spectroscopy measurements, it was found that for the PET surface treated by O2 plasma containing excited atomic oxygen species, ester bands were broken and carbonization formed on the PET surface.
2070. Hozumi, A., N. Shirahata, Y. Nakanishi, S. Asakura, and A. Fuwa, “Wettability control of a polymer surface through 126 nm vacuum ultraviolet light irradiation,” J. Vacuum Science and Technology, A22, 1309-1314, (Jul 2004).
The control of the surface wettability of poly (methyl methacrylate) (PMMA) substrates has been successfully demonstrated using an Ar2* excimer lamp radiating 126 nm vacuum ultraviolet (VUV) light. Each of the samples was exposed to 126 nm VUV light in air over the pressure range of 2×10−4-105 Pa. Although at the process pressures of 10, 103, and 105 Pa, the PMMA surfaces became relatively hydrophilic, the degree of hydrophilicity depended markedly on the pressure. The minimum water contact angles of the samples treated at 10, 103, and 105 Pa were about 50°, 33°, and 64°, respectively. These values were larger than those of PMMA substrates hydrophilized through 172 nm VUV irradiation conducted under the same conditions. On the other hand, after 126 nm VUV irradiation conducted under the high vacuum condition of 2×10−4 Pa, the PMMA substrate surface became carbon-rich, probably due to preferential cross-linking reactions, as evidenced by x-ray photoelectron spectroscopy. This surface was hydrophobic, showing a water contact angle of about 101°. Although the 126 nm VUV-irradiated surfaces appeared relatively smooth when observed by atomic force microscope, very small particles with diameters of 30-60 nm, which probably originated from the readhesion of photodecomposed products, existed on all of the sample surfaces.
2084. Lee, Y., S. Han, J.-H. Lee, J.-H. Yoon, H.E. Lim, and K.-J. Kim, “Surface studies of plasma source ion implantation treated polystyrene,” J. Vacuum Science and Technology, A16, 1710-1715, (May 1998).
2022. Matienzo, L.J., J.A. Zimmerman, and F.D. Egitto, “Surface modification of fluoropolymers with vacuum ultraviolet irradiation,” J. Vacuum Science and Technology A, 12, 2662-2671, (Sep 1994).
2031. Lim, H., Y. Lee, S. Han, and J. Cho, “Surface treatment and characterization of PMMA, PHEMA, and PHPMA,” J. Vacuum Science and Technology A, 19, 1490-1496, (Jul 2001).
1116. Schoff, C.K., “Coatings clinic: Wetting and wettability,” JCT CoatingsTech, 1, 108, (Oct 2004).
1167. Schoff, C.K., “Coatings clinic: Surface tension and surface energy,” JCT CoatingsTech, 3, 72, (Feb 2006).
1566. Williams, K., and B. Bauman, “New technology for enhancing wood-plastic composites,” JCT CoatingsTech, 4, 52-57, (Aug 2007).
2154. Schoff, C.K., “Coatings clinic: Interfaces and migration,” JCT CoatingsTech, 6, 48, (May 2009).
2157. no author cited, “Two new coatings-related standards released by ASTM International,” JCT CoatingsTech, 6, 19, (Jun 2009).
1006. Kusano, Y., T. Noguchi, M. Yoshikawa, N. Kato, and K. Naito, “Effect of discharge treatment on vulcanised rubber surfaces,” in IRC '95 Kobe International Rubber Conference Proceedings, 432-435, Japan Society of Rubber Industry, 1995.
9. Andrews, E.H., and N.E. King, “Surface energetics and adhesion,” in Polymer Surfaces, 47-63, John Wiley & Sons, 1978.
43. Briggs, D., “Analysis and chemical imaging of polymer surfaces by SIMS,” in Polymer Surfaces and Interfaces, Feast, W.J., and H.S. Munro, eds., 33-53, John Wiley & Sons, 1987.
62. Clark, D.T., and W.J. Feast, eds., Polymer Surfaces, John Wiley & Sons, 1978.
71. Davies, M.C., “SSIMS - an emerging technique for the surface chemical analysis of polymeric biomaterials,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 203-226, John Wiley & Sons, Apr 1993.
93. Feast, W.J., and H.S. Munro, eds., Polymer Surfaces and Interfaces, John Wiley & Sons, 1987.
95. Feast, W.J., H.S. Munro, and R.W. Richards, eds., Polymer Surfaces and Interfaces II, John Wiley & Sons, Apr 1993.
118. Garbassi, F., M. Morra, and E. Occhiello, Polymer Surfaces: From Physics to Technology, John Wiley & Sons, Nov 1997.
125. George, G.A., “Surface modification and analysis of ultra-high modulus polyethylene fibres for composites,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 161-202, John Wiley & Sons, Apr 1993.
398. Yasuda, H.K., D.L. Cho, and Y.-S. Yeh, “Plasma-surface interactions in the plasma modification of polymer surfaces,” in Plasma Surfaces and Interfaces, Feast, W.J., and H.S. Munro, eds., 149-162, John Wiley & Sons, 1987.
429. Briggs, D., and M.P. Seah, Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy, John Wiley & Sons, 1983.
620. Vogler, E.A., “On the origins of water wetting terminology,” in Water in Biomaterials Surface Science, Morra, M., ed., 149-182, John Wiley & Sons, Sep 2001.
621. Della Volpe, C., and S. Siboni, “The evaluation of electron-donor and electron-acceptor properties and their role in the interaction of solid surfaces with water,” in Water in Biomaterials Surface Science, Morra, M., ed., 183-214, John Wiley & Sons, Sep 2001.
635. Gombotz, W.R., and A.S. Hoffman, “Functionalization of polymeric films by plasma polymerization of allyl alcohol and allylamine,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 285-303, John Wiley & Sons, May 1988.
639. Hoffman, A.S., “Biomedical applications of plasma gas discharge processes,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 251-267, John Wiley & Sons, 1988.
640. Iriyama, Y., and H. Yasuda, “Plasma treatment and plasma polymerization for surface modification of flexible poly(vinyl chloride),” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 97-124, John Wiley & Sons, 1988.
647. Marchant, R.E., C.J. Chou, and C. Khoo, “Effect of nitrogen RF plasma on the properties of polypropylene,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 126-138, John Wiley & Sons, 1988.
655. van Oss, C.J., “Acid-base effects at polymer interfaces,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 267-286, John Wiley & Sons, Apr 1993.
659. Young, R.J., “Characterization of interfaces in polymers and composites using Raman spectroscopy,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 131-160, John Wiley & Sons, Apr 1993.
740. Chen, W.-L., and K.R. Shull, “Surface modification for adhesion minimization in aqueous environments,” in Polymer Surfaces & Interfaces III, Richards, R.W., and S.K. Peace, eds., 269-284, John Wiley & Sons, Jul 1999.
741. Wheale, S.H., J.P.S. Badyal, J. Bech, and N.H. Nilsson, “Atmospheric versus low-pressure plasma oxidation of rubber surfaces,” in Polymer Surfaces & Interfaces III, Richards, R.W., and S.K. Peace, eds., 285-297, John Wiley & Sons, Jul 1999.
854. Briggs, D., “Applications of XPS in polymer technology,” in Practical Surface Analysis, 2nd Ed., Vol. 1: Auger and X-ray Photoelectron Spectroscopy, Briggs, D., and M.P. Seah, eds., 437-484, John Wiley & Sons, 1990.
917. Schonhorn, H., “Surface modification of polymers for adhesive bonding,” in Polymer Surfaces, Clark, D.T., and W.J. Feast, eds., 213-233, John Wiley & Sons, 1978.
934. Clark, D.T., A. Dilks, and D. Shuttleworth, “The application of plasmas to the synthesis and surface modification of polymers,” in Polymer Surfaces, Clark, D.T., and W.J. Feast, eds., 185-211, John Wiley & Sons, 1978.
1135. Packham, D.E., “Acid-base surface energy parameters,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 7-9, John Wiley & Sons, Jul 2005.
1136. Padday, J.F., “Contact angle,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 79-81, John Wiley & Sons, Jul 2005.
1137. Padday, J.F., “Contact angle measurement,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 82-84, John Wiley & Sons, Jul 2005.
1138. Packham, D.E., “Contact angles and interfacial tension,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 84-86, John Wiley & Sons, Jul 2005.
1139. Briggs, D., “Corona discharge treatment,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 89-90, John Wiley & Sons, Jul 2005.
1140. Packham, D.E., “Critical surface tension,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 94-96, John Wiley & Sons, Jul 2005.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->