Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 34 of 76, ordered by
 

1238. Morrow, R., “The theory of positive glow corona,” J. Physics D: Applied Physics, 30, 3099-3114, (1997).

1239. Morvov, M., “DC corona discharges in air and CO-air mixtures for various electrode materials,” J. Physics D: Applied Physics, 31, 1865-1874, (1998).

1356. Abdel-Salam, M., H. Singer, and A. Ahmed, “Effect of the dielectric barrier on discharges in non-uniform electric fields,” J. Physics D: Applied Physics, 34, 1219-1234, (2001).

1358. Allen, N.L., and A.A.R. Hashem, “The role of negative ions in the propagation of discharges across insulating surfaces,” J. Physics D: Applied Physics, 35, 2551-2557, (2002).

1370. El-Bahy, M.M., and M.A.A. El-Ata, “Onset voltage of negative corona on dielectric-coated electrodes in air,” J. Physics D: Applied Physics, 38, 3403-3411, (Sep 2005).

This paper describes theoretical and experimental investigations of the effect of an electrode coating on the onset voltage of a corona on negatively stressed electrodes. Dielectric-coated hemispherically-capped rod-to-plane gaps positioned in air are investigated. The onset voltage is calculated based on the self-recurring single electron avalanche developed in the investigated gap. Accurate calculation of the electric field in the vicinity of a coated rod and its correlation to the field values near a bare rod of the same radius are obtained using the charge simulation method. The calculated field values are utilized in evaluating the onset voltage of the corona. Also, laboratory measurements of the onset voltage on bare and coated electrodes are carried out. The effects of varying the field nonuniformity, the coating thickness and its permittivity on the onset voltage values are investigated. The results show that coating the electrodes with a dielectric material is effective in increasing the onset voltage of the corona on its surface. The calculated onset voltage values for coated and bare electrodes agree satisfactorily with those measured experimentally.

1387. Xia, Z., R. Gerhard-Multhaupt, W. Kunstler, A. Wedel, and R. Danz, “High surface-charge stability of porous polytetrafluoroethylene electret films at room and elevated temperatures,” J. Physics D: Applied Physics, 32, 83-85, (1999).

1524. Chen, Q., “PTFE electret negative charge stability after RF plasma treatment,” J. Physics D: Applied Physics, 35, 2939-2944, (Nov 2002).

1526. Massines, F., “Atmospheric pressure non-thermal plasmas for processing and other applications,” J. Physics D: Applied Physics, 38, (2005).

Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc.

Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions.

This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical model.

1528. Shenton, M.J., and G.C. Stevens, “Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments,” J. Physics D: Applied Physics, 34, 2761-2768, (Sep 2001).

1683. Roth, J.R., J. Rahel, X. Dai, and D.M. Sherman, “The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP) reactors for surface treatment applications,” J. Physics D: Applied Physics, 38, 555-567, (2005).

In this paper, we present data on the physics and phenomenology of plasma reactors based on the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) that are useful in optimizing the conditions for plasma formation, uniformity and surface treatment applications. It is shown that the real (as opposed to reactive) power delivered to a reactor is divided between dielectric heating of the insulating material and power delivered to the plasma available for ionization and active species production. A relationship is given for the dielectric heating power input as a function of the frequency and voltage at which the OAUGDP discharge is operated.

1731. Bradley, J.M., “Determining the dispersive and polar contributions to the surface tension of water-based printing ink as a function of surfactant surface excess,” J. Physics D: Applied Physics, 38, 2045-2050, (2005).

The surface tension of a model, water-based, flexographic printing ink was measured at a range of surfactant concentrations along with the equilibrium contact angle formed with polymer substrates. The surface excess of surfactant at each concentration was calculated using the Gibbs adsorption isotherm and assumed equal to the concentration of surfactant at the interface. The change in the surface tension of the ink formulation was assumed to be determined entirely by the surface concentration of surfactant. This allowed the estimation of the surface tension at the solid–liquid and solid–vapour boundaries when in contact with substrate based on the values obtained for pendant drops. The associated polar and dispersive contributions to the surface tension were then calculated using the Young–Dupré equation. The values of the polar and dispersive surface tension components extracted in this manner were compared with those calculated using the approach of van Oss, Chaudhury and Good. The use of surface excess in estimating the contributions to surface tension was found to give far better agreement with experimental data than the van Oss approach which is intended for use with pure liquids.

1807. Kasai, H., M. Kogoma, T. Moriwaki, and S. Okazaki, “Surface structure estimation by plasma fluorination of amorphous carbon, diamond, graphite and plastic film surfaces,” J. Physics D: Applied Physics, 19, L225-L228, (1986).

1824. Baum, E.A., T.J. Lewis, and R. Toomer, “Further observations on the decay of surface potential of corona charged polyethylene films,” J. Physics D: Applied Physics, 10, 2525-2531, (Dec 1977).

2513. Fridman, A., A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Physics D: Applied Physics, 38, R1-R24, (2005).

There has been considerable interest in non-thermal atmospheric pressure discharges over the past decade due to the increased number of industrial applications. Diverse applications demand a solid physical and chemical understanding of the operational principals of such discharges. This paper focuses on the four most important and widely used varieties of non-thermal discharges: corona, dielectric barrier, gliding arc and spark discharge. The physics of these discharges is closely related to the breakdown phenomena. The main players in electrical breakdown of gases: avalanches and streamers are also discussed in this paper. Although non-thermal atmospheric pressure discharges have been intensively studied for the past century, a clear physical picture of these discharges is yet to be obtained.

2522. Massines, F., and G. Gouda, “A comparison of polypropylene surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure,” J. Physics D: Applied Physics, 31, 3411-3420, (1998).

2532. Vesel, A., M. Mozetic, A. Hladnik, J. Dolenc, J. Zule, S. Milosevic, et al, “Modification of ink-jet paper by oxygen-plasma treatment,” J. Physics D: Applied Physics, 40, 3689-3696, (2007).

A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 × 1015 m−3 and a density of neutral oxygen atoms of 5 × 1021 m−3. Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment.

2558. Sarra-Bournet, C., S. Turgeon, D. Mantovani, and G. Laroche, “A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications,” J. Physics D: Applied Physics, 39, 3461-3469, (2006).

Plasma polymer surface modification is widely used in the biomedical field to tailor the surface properties of materials to improve their biocompatibility. Most of these treatments are performed using low pressure plasma systems but recently, filamentary dielectric barrier discharge (FDBD) and atmospheric pressure glow discharge (APGD) have appeared as interesting alternatives. The aim of this paper is to evaluate the potential of surface modifications realized with FDBD and APGD in different atmospheres (N2+ H2 and N2+ NH3 mixtures) on poly(tetrafluoroethylene) to determine the relative influence of both the discharge regime and the gas nature on the surface transformations. From XPS analysis, it is shown that the discharge regime can have a significant effect on the surface transformation; FDBDs operating in H2/N2 lead to a high concentration of amino-groups with high specificity but also important damaging on the surface. Glow discharges in both H2/N2 and NH3/N2 lead to lower concentrations of amino-groups with lower specificity but lower surface damaging. Therefore, this simple surface treatment seems to be an effective, low cost method for the production of uniform surface modification with amino-groups that can subsequently be used to graft various chemical functionalities used for biomaterial compatibility.

2559. Sira, M., D. Trunec, P. Stahel, V. Bursikova, Z. Navratil, and J. Bursik, “Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge,” J. Physics D: Applied Physics, 38, 621-627, (2005).

An atmospheric pressure glow discharge (APGD) was used for surface modification of polyethylene (PE) and polypropylene (PP). The discharge was generated between two planar metal electrodes, with the top electrode covered by a glass and the bottom electrode covered by the treated polymer sample. The discharge burned in pure nitrogen or in nitrogen-hydrogen or nitrogen-ammonia mixtures. The surface properties of both treated and untreated polymers were characterized by scanning electron microscopy, atomic force microscopy, surface free energy measurements and x-ray photoelectron spectroscopy. The influence of treatment time and power input to the discharge on the surface properties of the polymers was studied. The ageing of the treated samples was investigated as well. The surface of polymers treated in an APGD was homogeneous and it had less roughness in comparison with polymer surfaces treated in a filamentary discharge. The surface free energy of treated PE obtained under optimum conditions was 54 mJ m-2 and the corresponding contact angle of water was 40° the surface free energy of treated PP obtained under optimum conditions was 53 mJ m-2 and the contact angle of water 42°. The maximum decrease in the surface free energy during the ageing was about 10%.

2584. Temmerman, E., Y. Ashikev, N. Trushkin, C. Leys, and J. Verschuren, “Surface modification with a remote atmospheric pressure plasma DC glow discharge and surface streamer regime,” J. Physics D: Applied Physics, 38, 505-509, (Feb 2005).

A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure.

2982. Popelka, A., I. Krupa, I. Novak, M. Al-Maadeed, and M. Ouederni, “Improvement of aluminum/polyethylene adhesion through corona discharge,” J. Physics D: Applied Physics, 50, (Jan 2017).

Polyethylene (PE) is often used in several industrial applications including the building, packaging and transport industries. Aluminum (Al) is widely used in different applications in the automotive, railway, aeronautic, and naval industries because of its excellent mechanical and chemical properties. Laminates prepared from Al and PE lead to an enhancement in physical and mechanical properties. These materials play a main role in the packaging and building sectors, such as in TetraPak containers and aluminum composite panels. The main problem observed is associated with the adhesion between polymers and metals. This research focused on investigating the enhancement in the adhesion of the PE/Al laminate using the corona discharge. The corona treatment of the surfaces led to a significant increase in the adhesion of the PE/Al laminate as a result of improved surface properties confirmed by peel test measurements. Moreover, the positive effect of the corona treatment in combination with a primer on the improvement of adhesion characteristics was observed too. Different analytical techniques were employed to characterize the effect of the corona treatment on the improvement in adhesion of PE/Al. A significant increase in wettability was confirmed by the measurement of contact angles. Changes in the surface morphology of the PE and Al surface, after the corona treatments at different operating conditions, were observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to analyze changes in chemical composition after the corona discharge effect on PE and Al surfaces.

965. Hruska, Z., and X. Lepot, “Surface modification of polymer webs by oxyfluorination,” J. Plastic Film and Sheeting, 15, 235-255, (Jul 1999).

1291. Podhajny, R.M., “Corona treatment of polymeric films,” J. Plastic Film and Sheeting, 4, 177-188, (Jul 1988).

2050. Morris, B.A., “Understanding why adhesion in extrusion coating decreases with diminishing coating thickness,” J. Plastic Film and Sheeting, 24, 53-88, (Jan 2008).

It is well known that in extrusion coating, the coating adhesion to the substrate decreases with decreasing thickness. The study on this phenomenon is divided into three parts. Part I explores the reduction in adhesion of LDPE to paper and other porous substrates. Several hypotheses are proposed for the origin of this decrease, including a reduction in oxidation time, faster cooling in the air gap, and more rapid quenching in the nip. A model of the molten polymer penetration into the substrate shows that the greatest effect is cooling in the nip; thinner coatings have less time to flow into the substrate interstices once the chill roll contact is made. The model results agree well with experimental adhesion data from the literature.

In Part II, adhesion to aluminum foil and other nonporous substrates is studied. Several hypotheses are proposed for why peel strength decreases in these structures, including a reduction in the air gap time, faster air gap cooling, more rapid nip quenching, and stress imposed during drawing. Modeling and experimental results show that cooling in the nip and imposed stress have the greatest impact.

In Part III, the peel test is analyzed to understand why the peel strength of better adhering adhesives are more sensitive to changes in coating thickness. The analysis shows that changes in the critical dimension of the deformation region at the peel front may be responsible.

2051. Thurston, R.M., J.D. Clay, and M.D. Schulte, “Effect of atmospheric plasma treatment on polymer surface energy and adhesion,” J. Plastic Film and Sheeting, 23, 63-78, (Jan 2007).

This study describes experiments to quantify polymer surface energy changes after exposure to atmospheric plasma. Atmospheric plasma treatment permits surface functionalization at near-ambient temperatures. Polyethylene and polystyrene are treated with an atmospheric plasma unit. The increased surface energy and improved wetting characteristics lead to a significant adhesion improvement with adhesives that cannot be used without surface treatment.

2052. Ruddy, A.C., G.M. McNally, G. Nersisyan, W.G. Graham, and W.R. Murphy, “The effect of atmospheric glow discharge (APGD) treatment on polyetherimide, polybutyleneterephthalate, and polyamides,” J. Plastic Film and Sheeting, 22, 103-119, (Apr 2006).

Polyamide 6, polyamide 12, polybutyleneterephthalate, and polyetherimide films are plasma treated in an APGD unit using various applied voltages, gas flow rates, frequencies, and dwell times. The results show changes in the surface chemistry (FTIR); the degree of change in dynamic contact angle is found to be dependent on the polymer type, dwell time, and electrical characteristics of the plasma.

2053. Sakhalkar, S.S., K.B. Walters, D.E. Hirt, N.R. Miranda, and W.P. Roberts, “Surface characteristics of LLDPE film containing glycerol monostearate,” J. Plastic Film and Sheeting, 18, 33-43, (Jan 2002).

2054. Woods, S.S., and A.V. Pocius, “The influence of polymer processing additives (PPAS) on the surface and optical properties of polyolefin plastomer blown film,” J. Plastic Film and Sheeting, 17, 62-87, (Jan 2001).

2056. Ealer, G.E., W.C. Harris, and S.B. Samuels, “Characterization of surface-treated polyethylene for water-based ink printability,” J. Plastic Film and Sheeting, 6, 17-30, (Jan 1990).

2058. Marra, J.V., “Metallized OPP film, surface characteristics and physical properties,” J. Plastic Film and Sheeting, 4, 27-34, (Jan 1988).

2243. Gilbertson, T.J., M. Leonardelli, and R.A. Wolf, “Optimizing blown film line layouts for improved surface treating performance,” J. Plastic Film and Sheeting, 26, 83-104, (Jan 2010).

Blown film processors, large and small, have limited resources in both capital and manpower to devote to optimizing their productivity. Yet avenues of improvement are open for even the most over-extended organization. And some of the most effective modifications cost little more than a small change in equipment orientation or procedures. A key aspect of optimizing a blown film layout is line footprint and determining how to minimize footprint and maximize output with each integral piece of equipment on the line. Multiple surface treatment systems are integral to every blown film line and can control product quality and line efficiencies. The objective of this work is to present best practices of blown film manufacturers ranging from multinationals to small privately owned operations relative to the most effective surface treatment system designs, their roll coverings, optimum power density settings, alternative treatment technologies, troubleshooting protocols, and model line layouts that optimize production output.

2244. Nase, M., B. Langer, and W. Grellmann, “Influence of processing conditions on the peel behavior of polyethylene/polybutene-1 peel systems,” J. Plastic Film and Sheeting, 25, 61-80, (Jan 2009).

The peel characteristics of sealed low-density polyethylene/isotactic polybutene-1 (PE-LD/iPB-1) films, with different contents of iPB-1 up to 20 m.-% (mass percentage), were evaluated and simulated in dependence on the iPB-1 content, and in dependence on the peel rate. Sealing involves close contact and localized melting of two films for a few seconds. The required force, to separate the local adhered films, is the peel force, which is influenced, among others, by the content of iPB-1. The peel force decreases exponentially with increasing iPB-1 content. Transmission electron microscopy studies reveal a favorable dispersion of the iPB-1 particles within the seal area, for iPB-1 concentrations ≥6 m.-%. Here, the iPB-1 particles form continuous belt-like structures, which lead to a stable and reproducible peel process. The investigation of the peel rate-dependency on the peel characteristics is of important interest for practical applications. The peel force increases with increasing peel rate by an exponential law. A numerical simulation of the present material system proves to be useful to comprehend the peel process, and to understand the peel behavior in further detail. Peel tests of different peel samples were simulated, using a two-dimensional finite element model, including cohesive zone elements. The established finite element model of the peel process was used to simulate the influence of the modulus of elasticity on the peel behavior. The peel force is independent of the modulus of elasticity, however, the peel initiation value increases with increasing modulus of elasticity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 https://onlinelibrary.wiley.com/doi/10.1002/app.28999

154. Hansen, R.H., J.V. Pascale, T. DeBenedictis, and P.M. Rentzepis, “Effect of atomic oxygen on polymers,” J. Polymer Science, 3, Part A, 2205-2214, (1965).

306. Rossman, K., “Improvement of bonding properties of polyethylene,” J. Polymer Science, 19, 141-144, (1956).

317. Schonhorn, H., and L.H. Sharpe, “Surface energetics, adhesion, and adhesive joints, III. Surface tension of molten polyethylene,” J. Polymer Science, 3, Part A, 569-573, (1965).

318. Schonhorn, H., and L.H. Sharpe, “Surface energetics, adhesion, and adhesive joints, IV. Joints between epoxy adhesives and chlorotrifluoroethylene copolymer and terpolymer (Aclar),” J. Polymer Science, 3, Part A, 3087-3097, (1965).

392. Wu, S., “Calculation of interfacial tension in polymer systems,” J. Polymer Science, 34, Part C, 19-30, (1971).

1156. Pittman, A.G., and B.A. Ludwig, “Effect of polymer crystallinity on the wetting properties of certain fluoroalkyl acrylates,” J. Polymer Science Part A-1: Polymer Chemistry, 7, 3053-3066, (Nov 1969).

99. Foerch, R., N.S. McIntyre, and D.H. Hunter, “Modification of polymer surfaces by two-step plasma sensitized reactions,” J. Polymer Science Part A: Polymer Chemistry, 28, 803-809, (1990).

168. Inagaki, N., S. Tasaka, and K. Hibi, “Surface modification of Kapton film by plasma treatment,” J. Polymer Science Part A: Polymer Chemistry, 30, 1425-1431, (1992).

173. Iwata, H., A. Kishada, M. Suzuki, Y. Hata, and Y. Ikada, “Oxidation of polyethylene surface by corona discharge and subsequent graft polymerization,” J. Polymer Science Part A: Polymer Chemistry, 26, 3309-3322, (1988).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->

 Build ID built-Jan 3 2011-13:54:18
 Page ID 4195352929
 MGI Version 3.2.3
 MGI Region Path /
 Virtual Host Name dev.accudynetest.com
 Parameter Count 0
 Parameter List 
 Tag Body 
 Page Variable Count 21
 Page Variable List mgiSBShippingTotal="0.00"
 bibVar_Page="34"
 tIndex="8"
 bibVar_ResultCount="3022"
 prevURL="bibliography2.html?pageID=33&bibsort=publisher"
 nextURL="bibliography2.html?pageID=35&bibsort=publisher"
 bibsort="publisher"
 bibVar_LastPage="76"
 token=""
 mgiSBSubtotal="0.00"
 bibVar_FirstIndex="1321"
 bibVar_PrevPage="33"
 textURL="bibliography2.html?pageID=76&bibsort=publisher"
 bibVar_NextPage="35"
 searchstring="NOT auth='' ORDER BY publname"
 mgiSBTotal="0.00"
 numberURL="| <a href="bibliography2.html?pageID=1&bibsort=publisher" class="numURL">1</a> | <a href="bibliography2.html?pageID=2&bibsort=publisher" class="numURL">2</a> | <a href="bibliography2.html?pageID=3&bibsort=publisher" class="numURL">3</a> | <a href="bibliography2.html?pageID=4&bibsort=publisher" class="numURL">4</a> | <a href="bibliography2.html?pageID=5&bibsort=publisher" class="numURL">5</a> | <a href="bibliography2.html?pageID=6&bibsort=publisher" class="numURL">6</a> | <a href="bibliography2.html?pageID=7&bibsort=publisher" class="numURL">7</a> | <a href="bibliography2.html?pageID=8&bibsort=publisher" class="numURL">8</a> | <a href="bibliography2.html?pageID=9&bibsort=publisher" class="numURL">9</a> | <a href="bibliography2.html?pageID=10&bibsort=publisher" class="numURL">10</a> | <a href="bibliography2.html?pageID=11&bibsort=publisher" class="numURL">11</a> | <a href="bibliography2.html?pageID=12&bibsort=publisher" class="numURL">12</a> | <a href="bibliography2.html?pageID=13&bibsort=publisher" class="numURL">13</a> | <a href="bibliography2.html?pageID=14&bibsort=publisher" class="numURL">14</a> | <a href="bibliography2.html?pageID=15&bibsort=publisher" class="numURL">15</a> | <a href="bibliography2.html?pageID=16&bibsort=publisher" class="numURL">16</a> | <a href="bibliography2.html?pageID=17&bibsort=publisher" class="numURL">17</a> | <a href="bibliography2.html?pageID=18&bibsort=publisher" class="numURL">18</a> | <a href="bibliography2.html?pageID=19&bibsort=publisher" class="numURL">19</a> | <a href="bibliography2.html?pageID=20&bibsort=publisher" class="numURL">20</a> | <a href="bibliography2.html?pageID=21&bibsort=publisher" class="numURL">21</a> | <a href="bibliography2.html?pageID=22&bibsort=publisher" class="numURL">22</a> | <a href="bibliography2.html?pageID=23&bibsort=publisher" class="numURL">23</a> | <a href="bibliography2.html?pageID=24&bibsort=publisher" class="numURL">24</a> | <a href="bibliography2.html?pageID=25&bibsort=publisher" class="numURL">25</a> | <a href="bibliography2.html?pageID=26&bibsort=publisher" class="numURL">26</a> | <a href="bibliography2.html?pageID=27&bibsort=publisher" class="numURL">27</a> | <a href="bibliography2.html?pageID=28&bibsort=publisher" class="numURL">28</a> | <a href="bibliography2.html?pageID=29&bibsort=publisher" class="numURL">29</a> | <a href="bibliography2.html?pageID=30&bibsort=publisher" class="numURL">30</a> | <a href="bibliography2.html?pageID=31&bibsort=publisher" class="numURL">31</a> | <a href="bibliography2.html?pageID=32&bibsort=publisher" class="numURL">32</a> | <a href="bibliography2.html?pageID=33&bibsort=publisher" class="numURL">33</a> | 34 | <a href="bibliography2.html?pageID=35&bibsort=publisher" class="numURL">35</a> | <a href="bibliography2.html?pageID=36&bibsort=publisher" class="numURL">36</a> | <a href="bibliography2.html?pageID=37&bibsort=publisher" class="numURL">37</a> | <a href="bibliography2.html?pageID=38&bibsort=publisher" class="numURL">38</a> | <a href="bibliography2.html?pageID=39&bibsort=publisher" class="numURL">39</a> | <a href="bibliography2.html?pageID=40&bibsort=publisher" class="numURL">40</a> | <a href="bibliography2.html?pageID=41&bibsort=publisher" class="numURL">41</a> | <a href="bibliography2.html?pageID=42&bibsort=publisher" class="numURL">42</a> | <a href="bibliography2.html?pageID=43&bibsort=publisher" class="numURL">43</a> | <a href="bibliography2.html?pageID=44&bibsort=publisher" class="numURL">44</a> | <a href="bibliography2.html?pageID=45&bibsort=publisher" class="numURL">45</a> | <a href="bibliography2.html?pageID=46&bibsort=publisher" class="numURL">46</a> | <a href="bibliography2.html?pageID=47&bibsort=publisher" class="numURL">47</a> | <a href="bibliography2.html?pageID=48&bibsort=publisher" class="numURL">48</a> | <a href="bibliography2.html?pageID=49&bibsort=publisher" class="numURL">49</a> | <a href="bibliography2.html?pageID=50&bibsort=publisher" class="numURL">50</a> | <a href="bibliography2.html?pageID=51&bibsort=publisher" class="numURL">51</a> | <a href="bibliography2.html?pageID=52&bibsort=publisher" class="numURL">52</a> | <a href="bibliography2.html?pageID=53&bibsort=publisher" class="numURL">53</a> | <a href="bibliography2.html?pageID=54&bibsort=publisher" class="numURL">54</a> | <a href="bibliography2.html?pageID=55&bibsort=publisher" class="numURL">55</a> | <a href="bibliography2.html?pageID=56&bibsort=publisher" class="numURL">56</a> | <a href="bibliography2.html?pageID=57&bibsort=publisher" class="numURL">57</a> | <a href="bibliography2.html?pageID=58&bibsort=publisher" class="numURL">58</a> | <a href="bibliography2.html?pageID=59&bibsort=publisher" class="numURL">59</a> | <a href="bibliography2.html?pageID=60&bibsort=publisher" class="numURL">60</a> | <a href="bibliography2.html?pageID=61&bibsort=publisher" class="numURL">61</a> | <a href="bibliography2.html?pageID=62&bibsort=publisher" class="numURL">62</a> | <a href="bibliography2.html?pageID=63&bibsort=publisher" class="numURL">63</a> | <a href="bibliography2.html?pageID=64&bibsort=publisher" class="numURL">64</a> | <a href="bibliography2.html?pageID=65&bibsort=publisher" class="numURL">65</a> | <a href="bibliography2.html?pageID=66&bibsort=publisher" class="numURL">66</a> | <a href="bibliography2.html?pageID=67&bibsort=publisher" class="numURL">67</a> | <a href="bibliography2.html?pageID=68&bibsort=publisher" class="numURL">68</a> | <a href="bibliography2.html?pageID=69&bibsort=publisher" class="numURL">69</a> | <a href="bibliography2.html?pageID=70&bibsort=publisher" class="numURL">70</a> | <a href="bibliography2.html?pageID=71&bibsort=publisher" class="numURL">71</a> | <a href="bibliography2.html?pageID=72&bibsort=publisher" class="numURL">72</a> | <a href="bibliography2.html?pageID=73&bibsort=publisher" class="numURL">73</a> | <a href="bibliography2.html?pageID=74&bibsort=publisher" class="numURL">74</a> | <a href="bibliography2.html?pageID=75&bibsort=publisher" class="numURL">75</a> | <a href="bibliography2.html?pageID=76&bibsort=publisher" class="numURL">76</a>"
 page="34"
 iatatest=""
 bibVar_LastIndex="1360"
 searchString1="token = ''"
 HTML POST Argument Count 0
 HTML POST Argument List 
 URL Path Argument Count 2
 URL Path Argument List bibsort="publisher"
 pageID="34"
 CGI AUTH_TYPE 
 CGI CONTENT_LENGTH 
 CGI CONTENT_TYPE 
 CGI GATEWAY_INTERFACE CGI/1.1
 CGI HTTP_ACCEPT */*
 CGI HTTP_REFERER 
 CGI HTTP_USER_AGENT Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
 CGI PATH_INFO 
 CGI QUERY_STRING bibsort=publisher&pageID=34
 CGI REMOTE_ADDR 3.137.169.221
 CGI REMOTE_HOST 
 CGI REMOTE_IDENT 
 CGI REMOTE_USER 
 CGI REQUEST_METHOD GET
 CGI SCRIPT_NAME /bibliography2.html
 CGI SERVER_PORT 80
 CGI SERVER_PROTOCOL 
 CGI SERVER_NAME dev.accudynetest.com
 CGI SERVER_SOFTWARE MGI Apache