ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 32 of 76, ordered by
2078. Koh, S.-K., W.-K. Choi, J.-S. Cho, S.-K. Song, Y.-M. Kim, and H.-J. Jung, “Ar+ ion irradiation in oxygen environment for improving wettability of polymethylmethacrylate,” J. Materials Research, 11, 2933-2939, (Nov 1996).
44. Brown, J.R., P.J.C. Chappell, and Z. Mathys, “Plasma surface modification of advanced organic fibres III: Effects on the mechanical properties of aramid/vinylester and extended-chain polyethylene/vinyl ester composites,” J. Materials Science, 27, 6475-6480, (1992).
116. Garbassi, F., E. Occhiello, and F. Polato, “Surface effect of flame treatments on polypropylene (Part 1),” J. Materials Science, 22, 207-212, (1987).
117. Garbassi, F., E. Occhiello, F. Polato, and A. Brown, “Surface effect of flame treatments on polypropylene (Part 2),” J. Materials Science, 22, 1450-1456, (1987).
207. Ladizeski, N.H., and I.M. Ward, “The adhesion behavior of high modulus polyethylene fibers following plasma and chemical treatment,” J. Materials Science, 24, 3763-3773, (1989).
427. Briggs, D., D.M. Brewis, and M.B. Konieczko, “X-ray photoelectron spectroscopy studies of polymer surfaces, Part III. Flame treatment of polyethylene,” J. Materials Science, 14, 1344-1348, (1979).
1017. Moon, S.I., and J. Jang, “Factors affecting the interfacial adhesion of ultrahigh-modulus polyethylene fibre-vinylester composites using gas plasma treatment,” J. Materials Science, 33, 3419-3425, (Jul 1998).
1762. Hitchcock, S.J., N.T. Carroll, and M.G. Nicholas, “Some effects of substrate roughness on wettability,” J. Materials Science, 16, 714, (1981).
2500. Baldan, A., “Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment,” J. Materials Science, 39, 1-49, (2004).
In the present paper, the following topics are reviewed in detail: (a) the available adhesives, as well as their recent advances, (b) thermodynamic factors affecting the surface pretreatments including adhesion theories, wettability, surface energy, (c) bonding mechanisms in the adhesive joints, (d) surface pretreatment methods for the adhesively bonded joints, and as well as their recent advances, and (e) combined effects of surface pretreatments and environmental conditions on the joint durability and performance. Surface pretreatment is, perhaps, the most important process step governing the quality of an adhesively bonded joint. An adhesive is defined as a polymeric substance with viscoelastic behavior, capable of holding adherends together by surface attachment to produce a joint with a high shear strength. Adhesive bonding is the most suitable method of joining both for metallic and non-metallic structures where strength, stiffness and fatigue life must be maximized at a minimum weight. Polymeric adhesives may be used to join a large variety of materials combinations including metal-metal, metal-plastic, metal-composite, composite-composite, plastic-plastic, metal-ceramic systems. Wetting and adhesion are also studied in some detail in the present paper since the successful surface pretreatments of the adherends for the short- and long-term durability and performance of the adhesive joints mostly depend on these factors. Wetting of the adherends by the adhesive is critical to the formation of secondary bonds in the adsorption theory. It has been theoretically verified that for complete wetting (i.e., for a contact angle equal to zero), the surface energy of the adhesive must be lower than the surface energy of the adherend. Therefore, the primary objective of a surface pretreatment is to increase the surface energy of the adherend as much as possible. The influence of surface pretreatment and aging conditions on the short- and long-term strength of adhesive bonds should be taken into account for durability design. Some form of substrate pretreatment is always necessary to achieve a satisfactory level of long-term bond strength. In order to improve the performance of adhesive bonds, the adherends surfaces (i.e., metallic or non-metallic) are generally pretretead using the (a) physical, (b) mechanical, (c) chemical, (d) photochemical, (e) thermal, or (e) plasma method. Almost all pretreatment methods do bring some degree of change in surface roughness but mechanical surface pretreatment such as grit-blasting is usually considered as one of the most effective methods to control the desired level of surface roughness and joint strength. Moreover, the overall effect of mechanical surface treatment is not limited to the removal of contamination or to an increase in surface area. This also relates to changes in the surface chemistry of adherends and to inherent drawbacks of surface roughness, such as void formations and reduced wetting. Suitable surface pretreatment increases the bond strength by altering the substrate surface in a number of ways including (a) increasing surface tension by producing a surface free from contaminants (i.e., surface contamination may cause insufficient wetting by the adhesive in the liquid state for the creating of a durable bond) or removal of the weak cohesion layer or of the pollution present at the surface, (b) increasing surface roughness on changing surface chemistry and producing of a macro/microscopically rough surface, (c) production of a fresh stable oxide layer, and (d) introducing suitable chemical composition of the oxide, and (e) introduction of new or an increased number of chemical functions. All these parameters can contribute to an improvement of the wettability and/or of the adhesive properties of the surface.
2981. Novak, I., and S. Florian, “Investigation of long-term hydrophobic recovery of plasma modified polypropylene,” J. Materials Science, 39, 2033-2036, (Mar 2004).
This study concerns the surface and adhesive properties of isotactic polypropylene (iPP) modified by an electric discharge plasma and affected by long-term hydrophobic recovery of the polymer surface after modification. The investigations were focused on the change in polarity of the modified polymer expressed by the polar fraction as well as on the decrease in the surface free energy, its polar component and mechanical work of adhesion (A m) to polyvinyl acetate. A m of modified iPP to polyvinyl acetate as a function of polar fraction can be described by a mathematical formula. It has been confirmed that the most intensive decrease in the surface and adhesive properties investigated is produced by the long-term hydrophobic recovery of the polymer appears in the course of the first 30 days after its modification. During subsequent aging the process of polymer hydrophobic recovery proceeds more slowly. It has been found that the value of surface and adhesive properties of iPP as well as the dynamics of the decrease in these properties during hydrophobic recovery of the surface after modification is, in the main, dependent on the iPP crystallinity.
2988. Pascual, M., R. Balart, L. Sanchez, O. Fenollar, and O. Calvo, “Study of the aging process of corona discharge plasma effects on low density polyethylene film surface,” J. Materials Science, 43, 4901-4908, (Jul 2008).
A study of the durability of corona discharge plasma effects on a polymer surface was investigated in this work. We used the corona discharge plasma technique to modify the wettability properties of low density polyethylene (LDPE) film and evaluated the influence of relative humidity and temperature on the aging process with three different storage conditions. The effects of the aging process on the plasma-treated surface of LDPE film were quantified by contact angle measurements, Fourier-transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. The results obtained with these techniques have allowed us to determine how the aging process promotes changes in the plasma-treated surface by decreasing its wettability and taking place a remarkable hydrophobic recovery process.
956. Novak, I., and S. Florian, “Investigation of hydrophilicity of polyethylene modified by electric discharge in the course of ageing,” J. Materials Science Letters, 20, 1289-1291, (Jul 2001).
968. Novak, I., and S. Florian, “Effect of ageing on adhesion behaviour of discharge plasma-treated biaxially oriented polypropylene,” J. Materials Science Letters, 18, 1055-1057, (Jul 1999).
1012. Stefecka, M., J. Rahel, M. Cernak, I. Hudec, M. Mikula, and M. Mazur, “Atmospheric-pressure plasma treatment of ultrahigh molecular weight polyethylene fibres,” J. Materials Science Letters, 18, 2007-2008, (Dec 1999).
1290. Kinloch, A.J., G.K.A. Kodokian, and J.F. Watts, “Relationships between the surface free energies and surface chemical compositions of thermoplastic fibre composites and adhesive joint strengths,” J. Materials Science Letters, 10, 815-818, (1991).
1234. Mekishev, G.A., T.A. Yovcheva, E. Guentcheva, and S. Nedev, “On the charge decay in PP electrets stored at pressures lower than atmospheric,” J. Materials Science: Materials in Electronics, 14, 779-780, (Oct 2003).
2076. Kim, K.S., K.H. Lee, K. Cho, and C.E. Park, “Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment,” J. Membrane Science, 199, 135-145, (Apr 2002).
2080. Kull, K.R., M.L. Steen, and E.R. Fisher, “Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes,” J. Membrane Science, 246, 203-215, (Jan 2005).
Nitrogen-based plasma systems such as N2, NH3, Ar/NH3, and O2/NH3 were used to modify microporous polyethersulfone membranes. Treatments were designed to alter the surface chemistry of the membranes to create permanently hydrophilic surfaces. Contact angle measurements taken initially, as well as 1 year post-treatment confirmed that treatments using O2/NH3 plasmas (with a 5:3 gas flow ratio) were successful in achieving our designed goals. Analyses by FT-IR and XPS established the incorporation of NHx and OH species in the PES membranes. Moreover, the plasma penetrates the thickness of the membrane, thereby modifying the entire membrane cross-section. Optical emission spectroscopy studies of excited state species present in the modifying gases revealed the presence of OH*, which was not present in a 100% ammonia plasma, suggesting OH* must play a critical role in the membrane modification process. Investigations using bubble point analysis, differential scanning calorimetry, and scanning electron microscopy demonstrate there is no damage occurring under these specific treatment conditions. The usefulness of this treatment is revealed by increased water flux, reduced protein fouling, and greater flux recovery after gentle cleaning when compared to an untreated membrane.
2092. Steen, M.L., L. Hymas, E.D. Havey, N.E. Capps, D.G. Castner, and E.R. Fisher, “Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification,” J. Membrane Science, 188, 97-114, (Jun 2001).
1739. Timerghazin, Q.K., S.L. Khursan, and V.V. Shereshovets, “Theoretical study of the reaction between ozone and the C-H bond: Gas-phase reactions of hydrocarbons with ozone,” J. Molecular Structure, 489, 87-93, (1999).
2027. Ewane-Ebele, F., and H.P. Schreiber, “Measurement and use of surface tension data in film-forming polymers,” J. Oil and Colour Chemists Association, 60, 249-255, (Jul 1977).
2077. Kitova, S., M. Minchev, and G. Danev, “RF plasma treatment of polycarbonate substrates,” J. Optoelectronics and Advanced Materials, 7, 2607-2612, (Oct 2005).
The effect of Ar, Ar/C2H5OH, O2 and Ar/O2 RF (13.56 MHz) plasma treatments on surface free energy and morphology, optical properties and adhesion of polycarbonate (PC) substrates has been studied. Changes in the surface properties were followed as a function of the plasma treatment time. The polar and dispersion components of the polymer free surface energy were determined on the basis of the theory of Owens, Wendt, Kaelble and Uy. It was found that all RF plasma treatments led to an increase in the polar component of PC, mainly due to an increased hydrogen bonding ability. The increase in surface free energy reached its maximum at short plasma treatment with 3:1 gas mixture of Ar/O2. This treatment also led to pronounced improvement of the adhesion of thin SiO2 films plasma deposited on modified PC substrates, while the treatments with pure oxygen or Ar/ethanol plasma had negative effect on the adhesion.
386. Wetterman, R.P., “Electrical surface treatment of polyolefin packaging materials for improved adhesion and printing,” J. Packaging Technology, 6, 22-25, (Nov 1990).
431. Burrell, H., “The challenge of the solubility parameter concept,” J. Paint Technology, 40, 197, (1968).
462. Gardon, J.L., “The influence of polarity upon the solubility parameter concept,” J. Paint Technology, 38, 43, (1966).
470. Hansen, C.M., “The three dimensional solubility parameter - key to paint component affinities, I. Solvents, plasticizers, polymers, and resins,” J. Paint Technology, 39, 104+, (1967).
472. Hansen, C.M., “The three dimensional solubility parameter - key to paint component affinities, III. Independent calculation of the parameter components,” J. Paint Technology, 39, 511+, (1967).
473. Hansen, C.M., “Characterization of surfaces by spreading liquids,” J. Paint Technology, 42, 660+, (1970).
474. Hansen, C.M., “Surface dewetting and coatings performance,” J. Paint Technology, 44, 57+, (1972).
483. Hoy, K.L., “New values of the solubility parameters from vapor pressure data,” J. Paint Technology, 42, 76+, (1970).
513. Lee, L.-H., “Relationships between solubility and surface tension of liquids,” J. Paint Technology, 42, 365+, (1970).
471. Hansen, C.M., “The three dimensional solubility parameter - key to paint component affinities, II. Dyes, emulsifiers, mutual solubility and compatability, and pigments,” J. Paint Technololgy, 39, 505-510, (1967).
519. Liao, W.-C., and J.L. Zatz, “Surfactant solutions as test liquids for measurements of critical surface tension,” J. Pharmaceutical Science, 68, 486-488, (1979).
1412. Okazaki, S., and M. Kogoma, “Development of atmospheric pressure flow discharge plasma and its application on a surface with curvature,” J. Photopolymer Science and Technology, 6, 339-342, (1993).
11. Babu, S.R., “Determination of surface tension of liquids,” J. Physical Chemistry, 90, 4337-4340, (Aug 1986).
51. Cazabar, A.M., and M.A. Cohen Stuart, “Dynamics of wetting: effects of surface roughness,” J. Physical Chemistry, 90, 5845-5849, (Oct 1986).
60. Chen, Y.L., C.A. Helm, and J.N. Israelachvili, “Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces,” J. Physical Chemistry, 95, 10736-10747, (Dec 1991).
105. Fowkes, F.M., “Determination of interfacial tensions, contact angles, and dispersion forces by assuming additivity of intermolecular interactions at surfaces (letter),” J. Physical Chemistry, 66, 382, (1962).
106. Fowkes, F.M., “Additivity of intermolecular forces at interfaces, I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids,” J. Physical Chemistry, 67, 2538-2541, (1963).
108. Fowkes, F.M., “Comments on 'The calculation of cohesive and adhesive energies', by J.F. Padday and N.D. Uffindell (letter),” J. Physical Chemistry, 72, 1407, (1968).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->