ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 31 of 76, ordered by
2898. Drelich, J., J.D. Miller, and R.J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,” J. Colloid and Interface Science, 179, 37-50, (Apr 1996).
2903. Van Oss, C.J., L. Ju, M.K. Chaudhury, and R.J. Good, “Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels,” J. Colloid and Interface Science, 128, 313-319, (Mar 1989).
2905. Della Volpe, C, D. Maniglio, M. Brugnara, S. Siboni, and M. Morra, “The solid surface free energy calculation: I. In defense of the multicomponent approach,” J. Colloid and Interface Science, 271, 434-453, (Mar 2004).
The acid-base approach to the calculation of solid surface free energy and liquid-liquid interfacial tensions is a practical example of application of correlation analysis, and thus it is an approximate approach. In these limits, and provided that wide and well-obtained sets of contact angles or interfacial tension data are used for their computation, surface tension components can be considered as material properties. Although their numerical value depends on the characteristics of the chosen reference material, their chemical meaning is independent on the selected scale. Contact angles contain accessible information about intermolecular forces; using surface tension component (STC) acid-base theory, one can extract this information only making very careful use of the mathematical apparatus of correlation analysis. The specific mathematical methods used to obtain these results are illustrated by using as an example a base of data obtained by the supporters of the equation-of-state theory (EQS). The achievements are appreciably good and the agreement between STC and EQS is discussed.
2906. Siboni, S., C. Della Volpe, D. Maniglio, and M. Brugnara, “The solid surface free energy calculation: II. The limits of the Zisman and of the 'equation of state' approaches,” J. Colloid and Interface Science, 271, 454-472, (Mar 2004).
This paper follows the “defense” of the Good-van Oss-Chaudhury (GvOC) acid-base approach made in Part I and carries out a detailed analysis of the Zisman critical surface energy and, mainly, of the Neumann equation-of-state (EQS) theory. The analysis is made on both a “practical” and a theoretical basis, trying to highlight the acceptable fitting results of axisymmetric drop shape analysis (ADSA) methods and their independence of the assumed thermodynamic foundations of EQS. Some new and original criticisms of the EQS approach are raised and it is shown that other purely semiempirical models, represented by different fitting equations with the same number of parameters, can represent the data measured by ADSA method with the same goodness as EQS. The equation of state appears as one of many semiempirical approaches for the evaluation of surface free energy of solids. Independent of the previous analysis, the criteria used in ADSA measurements are evaluated and some comments made on them.
3012. Yu, W., and W. Hou, “Correlations of surface free energy and solubility parameters for solid substances,” J. Colloid and Interface Science, 544, 8-13, (May 2019).
Hypothesis: Both the surface free energy (γ) and solubility (δ) parameters of substances are related to their cohesive energies which are decided by intermolecular interactions, and there should be some intrinsic relationships between the two parameters. Understanding of the γ-δ correlations is of great fundamental and practical importance. Several empirical γ-δ equations have been proposed so far, but their application to solids is limited. This is because the molar volume (V~) as a parameter exists in these equations while the V~ of solids is commonly hard to be obtained. Hence, the development of γ-δ equations without the parameter V~ is essential for solids.
Method: The γ and δ data of 21 solids including polymers and layered solid materials were chosen, and possible γ-δ relationships were systematically explored using the parameter data of solids by a trial and error fitting method.
Finding: Six γ-δ equations without the parameter V~ are proposed. The γ parameters include total (γt), dispersive (γd), and polar (γp) ones, and the δ parameters include the Hildebrand parameter (δt) and the Hansen dispersive (δd), polar (δp), and hydrogen-bonding (δh) ones. Interestingly, the so-obtained V~-free γ-δ equations are also valid for most liquids including nonpolar and polar ones. These γ-δ equations can provide a way to estimate non-measurable parameters from measurable parameters for solid materials, which is beneficial to the application of the characteristic parameters (γ and δ) for solid material engineering.
1694. Clint, J.H., “Adhesion and components of solid surface energies,” J. Current Opinions on Colloid and Interface Science, 6, 28-33, (2001).
1598. Good, R.J., M. Islam, R.E. Baier, and A.E. Meyer, “The effect of surface hydrogen bonding (acid-base interaction) on the hydrophobicity or hydrophilicity of copolymers: variation of contact angles and cell adhesion and growth with composition,” J. Dispersion Science and Technology, 19, 1163+, (1998).
1746. Grace, J.M., and L.J. Gerenser, “Plasma treatment of polymers,” J. Dispersion Science and Technology, 24, 305-341, (2003).
1826. van Oss, C.J., R.J. Good, and H.J. Busscher, “Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids,” J. Dispersion Science and Technology, 11, 75-81, (Feb 1990).
831. Hwang, Y.J., S. Matthews, M. McCord, and M. Bourham, “Surface modification of organic polymer films treated in atmospheric plasmas,” J. Electrochemical Society, 151, C495-C501, (2004).
The effect of plasma treatment on surface characteristics of polyethylene terephthalate films was investigated using helium and oxygenated-helium atmospheric plasmas. Sample exposure to plasma was conducted in a closed ventilation test cell inside the main plasma chamber with variable exposure times. The percent weigh loss of the samples showed an initial increase followed by decrease with extended exposure time, indicating a combined mechanism of etching and redeposition. The wettability as measured by the contact angle showed a sharp initial increase followed by a steady-state trend with increased exposure time, suggesting a change in surface functionality. Atomic force microscopy analysis revealed increase in surface roughness, as well as evidence of redeposition of etched volatiles. Functionality changes were measured using X-ray photoelectron spectroscopy and these changes were correlated to the new plasma-induced properties. © 2004 The Electrochemical Society. All rights reserved.
2993. Park, J.B., J.S. Oh, E.L. Gil, S.J. Kyoung, J.T. Lin, and G.Y. Yeom, “Polyimide surface treatment by atmospheric pressure plasma for metal adhesion,” J. Electrochemical Society, 157, (Oct 2010).
The surface of polyimide (PI) films before/after plasma surface treatment using a remote-type modified dielectric barrier discharge was investigated to improve the adhesion between the PI substrate and the metal thin film. Among the plasma treatments of the PI substrate surface using various gas mixtures, the surface treated with the N-2/He/SF6/O-2 plasma showed the lowest contact angle value due to the high C=O bondings formed on the PI surface, while that treated with N-2/He/SF6 showed the highest contact angle value due to the high C-F-x chemical bondings on the PI surface. Specifically, when the O-2 gas flow was varied from 0 to 2.0 slm in the N-2(40 slm)/He(1 slm)/SF6(1.2 slm)/O-2 (x slm) gas composition, the lowest contact angle value of about 9.3 degrees was obtained at an O-2 gas flow of 0.9 slm. And it was due to the high content of oxygen radicals in the plasma, which leads to the formation of the highest C=O bondings on the PI surface. When the interfacial adhesion strength between the Ag film and PI substrate was measured after the treatment with N-2(40 slm)/He(1 slm)/SF6(1.2 slm)/O-2(0.9 slm) followed by the deposition of Ag, a peel strength of 111 gf/mm was observed, which is close to the adhesion strength between a metal and the PI treated by a low pressure plasma.
1246. Pijpers, A.P., and R.J. Meier, “Adhesion behaviour of polyproylenes after flame treatment determined by XPS (ESCA) spectral analysis,” J. Electron Spectroscopy and Related Phenomena, 121, 299-313, (Dec 2001).
2326. Stark, W., “Electret formation by electrical discharge in air,” J. Electronics, 22, 329-339, (1989).
1188. Chen, Q., “Investigation of corona charge stability mechanisms in polytetrafluoroethylene (PTFE) teflon films after plasma treatment,” J. Electrostatics, 59, 3-13, (Jul 2003).
1237. Molinie, P., “Charge injection in corona-charged polymeric films: Potential decay and current measurements,” J. Electrostatics, 45, 265-273, (Feb 1999).
1257. Takahashi, N., A. Goldman, M. Goldman, and J. Rault, “Surface modification of LDPE by a DC corona discharge generated in a point-to-grid system: The influence of geometric parameters of the system on modification power,” J. Electrostatics, 50, 49-63, (Sep 2000).
1380. Sahil, S., A. Bellel, Z. Ziari, A. Kahlouche, and Y. Segui, “Measure and analysis of potential decay in polypropylene films after negative corona charge deposition,” J. Electrostatics, 57, 169-181, (Feb 2003).
90. Ehrhard, P., and S.H. Davis, “Non-isothermal spreading of liquid droplets on horizontal plates,” J. Fluid Mechanics, 229, 365-388, (Aug 1991).
150. Haley, P.J., and M.J. Miksis, “The effect of the contact line on droplet spreading,” J. Fluid Mechanics, 223, 57-81, (Feb 1991).
189. Katoh, K., H. Fujita, and H. Sasaki, “Macroscopic wetting behavior and a method for measuring contact angles,” J. Fluids Engineering, 112, 289-295, (1990).
478. Hayes, L.J., “Surface energy of fluorinated surfaces,” J. Fluorinated Chemistry, 8, 69+, (1976).
1216. Hruska, Z., and X. Lepot, “Ageing of the oxyfluorinated polypropylene surface: Evolution of the acid-base surface characteristics with time,” J. Fluorine Chemistry, 105, 87-93, (Jul 2000).
2032. du Toit, F.J., and R.D. Sanderson, “Surface fluorination of polypropylene, I: Characterisation of surface properties,” J. Fluorine Chemistry, 98, 107-114, (Sep 1999).
2033. du Toit, F.J., and R.D. Sanderson, “Surface fluorination of polypropylene, II: Adhesion properties,” J. Fluorine Chemistry, 98, 115-119, (Sep 1999).
2424. Montazavi, S.H., M. Ghoranneviss, and A.H. Sari, “Argon/hexamethyldisiloxane plasma effects on polypropylene film surface properties,” J. Fusion Energy, 29, 499-502, (2010).
In this work a DC plasma reactor was used for deposition of plasma polymerized coating from hexamethyldisiloxane-Ar (35/65%) mixture on polypropylene films. Surface energy parameter have been calculated using Owens-Wendt approaches with the sessile drop method are used to obtain the dispersive γD and polar γP component of surface free energy. The surface morphology of samples were investigated using scanning electron microscope. Also the chemical properties and wetability of prepared samples were tested using Fourier transform infrared spectroscopy and contact angle measurement, respectively.
1342. Lecomte du Nouy, P., “A new apparatus for measuring surface tension,” J. Gen. Physiol., 1, 521-524, (1919).
2995. Cho, J.H., B.K. Kang, K.S. Kim, B.K. Choi, S.H. Kim, and W.Y. Choi, “Hydrophilic effect of the polyimide by atmospheric low-temperature plasma treatment,” J. Korean Institute of Electrical and Electronic Material Engineers, 18, 148-152, (2005).
Atmospheric low-temperature plasma was produced using dielectric barrier discharge (DBD) plate-type plasma reactor and high frequency of 13.56 Hz. The surfaces of polyimide films for insulating and packaging materials were treated by the atmospheric low-temperature plasma. The contact angle of 67 was observed before the plasma treatment. The contact angle was decreased with deceasing the velocity of plasma treatment. In case of oxygen content of 0.2 %, electrode gap of 2 mm, the velocity of plasma treatment of 20 mm/sec, and input power of 400 W, the minimum contact angle of 13 was observed. The chemical characteristics of polyimide film after the plama treatment were investigated using X-ray photoelectron spectroscopy (XPS), and new carboxyl group bond was observed. The surfaces of polyimide films were changed into hydrophilic by the atmospheric low-temperature plasma. The polyimide films having hydrophilic surface will be very useful as a packaging and insulating materials in electronic devices.
66. Coopes, I.H., and K.J. Gifkins, “Gas plasma treatment of polymer surfaces,” J. Macromolecular Science, A17, 217-226, (1982).
267. Ogita, T., A.N. Ponomarev, S. Nishimoto, and T. Kagiya, “Surface structure of low-density polyethylene film exposed to air plasma,” J. Macromolecular Science, A22, 1135-1150, (1985).
303. Reneker, D.H., and L.H. Bolz, “Effect of atomic oxygen on the surface morphology of polyethylene,” J. Macromolecular Science, A10, 599-608, (1976).
393. Wu, S., “Interfacial and surface tensions of polymers,” J. Macromolecular Science, C10, 1-73, (1974).
395. Yasuda, H.K., “Plasma for modification of polymers,” J. Macromolecular Science, A10, 383-420, (1976).
1653. Neumann, A.W., R.J. Good, P. Ehrlich, P.K. Basu, and G.J. Johnston, “The temperature dependence of the surface tension of solutions of atactic polystyrene,” J. Macromolecular Science, B7, 525, (1973).
1659. van Oss, C.J., and R.J. Good, “Surface tension and the solubility of polymers and biopolymers: the role of polar and apolar interfacial free energies,” J. Macromolecular Science, A26, 1183-1203, (1989).
2509. Denes, F., Z.Q. Hua, E. Barrios, R.A. Young, and J. Evans, “Influence of RF-cold plasma treatment on the surface properties of paper,” J. Macromolecular Science Part A: Pure and Applied Chemistry, 32, 1405-1443, (1995).
2019. Carrino, L., G. Moroni, and W. Polini, “Cold plasma treatment of polypropylene surface: A study on wettability and adhesion,” J. Materials Processing Technology, 121, 373-382, (Feb 2002).
2923. Carrino, L., G. Moroni, and W. Polini, “Cold plasma treatment of polypropylene surface: a study on wettability and adhesion,” J. Materials Processing Technology, 121, 373-382, (Feb 2002).
162. Hook, Y.J., J.A. Gardella, Jr., and L. Salvati Jr., “Multitechnique surface spectroscopic studies of plasma-modified polymers, I. Water/argon plasma-modified polymethylmethacrylates,” J. Materials Research, 2, 117-131, (1987).
163. Hook, Y.J., J.A. Gardella, Jr., and L. Salvati Jr., “Multitechnique surface spectroscopic studies of plasma-modified polymers, II. Water/argon plasma-modified polymethylmethacrylate/polymethylacrylic acid copolymers,” J. Materials Research, 2, 132-142, (1987).
1848. Cho, J.-S., W.-K. Choi, H.-J. Jung, and S.-K. Koh, “Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation,” J. Materials Research, 12, 277-282, (Jan 1997).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->