Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 30 of 76, ordered by
 

1988. Dabros, T., and T.G.M. Van de Ven, “On the effects of blocking and particle detachment on coating kinetics,” J. Colloid and Interface Science, 93, 576-579, (Jun 1983).

1989. Sachler, E., “The possibility of 'standard' surface tension values for polymers,” J. Colloid and Interface Science, 92, 275-276, (Mar 1983).

1990. Birdi, K.S., “Contact angle hysteresis on some polymeric solids,” J. Colloid and Interface Science, 88, 290-293, (Jul 1982).

1991. Matsunaga, T.J., and Y. Ikada, “Dispersive component of surface free energy of hydrophilic polymers,” J. Colloid and Interface Science, 84, 8-13, (Nov 1981).

1992. Schwartz, A.M., “Contact angle hysteresis: A molecular interpretation,” J. Colloid and Interface Science, 75, 404-408, (Jun 1980).

1993. Fisher, L.R., “Measurement of small contact angles for sessile drops,” J. Colloid and Interface Science, 72, 200-205, (Nov 1979).

1994. Lunkenheimer, K., and K.D. Wantke, “On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solution,” J. Colloid and Interface Science, 66, 579-581, (Oct 1978).

1995. Good, R.J., and E.D. Kotsidas, “The contact angle of water on polystyrene: A study of the cause of hysteresis,” J. Colloid and Interface Science, 66, 360-362, (Sep 1978).

1996. Ronay, M., “Determination of the dynamic surface tension of inks from the capillary instability of jets,” J. Colloid and Interface Science, 66, 55-67, (Aug 1978).

1997. Gifford, W.A., “The effect of contact angle on ring tensiometry,” J. Colloid and Interface Science, 64, 588-591, (May 1978).

1998. Johnson, R.E., Jr., R.H. Dettre, andD.A. Brandreth, “Dynamic contact angles and contact angle hysteresis,” J. Colloid and Interface Science, 62, 205-212, (Nov 1977).

1999. Davis, B.W., “Estimation of surface free energies of polymeric materials,” J. Colloid and Interface Science, 59, 420-428, (May 1977).

2000. Ryley, D.J., and B.H. Khoshaim, “A new method of determining the contact angle made by a sessile drop upon a horizontal surface (sessile drop contact angle),” J. Colloid and Interface Science, 59, 243-251, (Apr 1977).

2001. Phillips, R.W., and R.H. Dettre, “Application of ESCA and contact angle measurements to studies of surface activity in a fluoropolymer mixture,” J. Colloid and Interface Science, 56, 251-254, (Aug 1976).

2002. Baszkin, A., M. Nishino, and L. Ter Minassian-Seraga, “Solid-liquid adhesion of oxidized polyethylene films: Effect of temperature,” J. Colloid and Interface Science, 54, 317-328, (Mar 1976).

2003. Toyama, M., and T. Ito, “Studies on surface wettability of stereoscopic poly(methacrylic acid esters),” J. Colloid and Interface Science, 49, 139-142, (Oct 1974).

2004. Hamilton, W.C., “Measurement of the polar force contribution to adhesive bonding,” J. Colloid and Interface Science, 47, 672-675, (Jun 1974).

2005. Rhee, S.K., “Surface tension of low-energy solids,” J. Colloid and Interface Science, 44, 173-174, (Jul 1973).

2006. Good, W.R., “A comparison of contact angle interpretations,” J. Colloid and Interface Science, 44, 63-71, (Jul 1973).

2007. Baszkin, A., and L. Ter Minassian-Saraga, “Wetting of polyethylene by water, methylene iodide and methylene iodide-decalin mixtures,” J. Colloid and Interface Science, 43, 190-202, (Apr 1973).

2009. Wu, S., and K.J. Brzozowski, “Surface free energy and polarity of organic pigments,” J. Colloid and Interface Science, 37, 686-690, (Dec 1971).

2024. Dutschk, V., K.G. Sabbatovskiy, M. Stolz, K. Grundke, and V.M. Rudoy, “Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces,” J. Colloid and Interface Science, 267, 456-462, (Nov 2003).

2041. Extrand, C.W., and Y. Kumagai, “An experimental study of contact angle hysteresis,” J. Colloid and Interface Science, 191, 378-383, (Jul 1999).

2071. Hozumi, A., H. Inagaki, and T. Kameyama, “The hydrophilization of polystyrene substrates by 172-nm vacuum ultraviolet light,” J. Colloid and Interface Science, 278, 383-392, (Oct 2004).

This paper describes the photochemical surface modification of polystyrene (PS) substrates using vacuum ultraviolet (VUV) light 172 nm in wavelength. We have particularly focused on the effects of atmospheric pressure during VUV irradiation on the obtained surface's wettability and the stability of the wettability, in addition to its chemical structure, morphology, and photooxidation rate. Samples were photoirradiated with VUV light under pressures of 10, 10(3), or 10(5) Pa. Although, in each case, the originally hydrophobic PS surface became highly hydrophilic, the final water-contact angle and photooxidation rate depended on the atmospheric pressure. The samples treated at 10 Pa were less wettable than those prepared at 10(3) and 10(5) Pa due to the shortage of oxygen molecules in the atmosphere. The minimum water-contact angles of the samples treated at 10, 10(3), and 10(5) Pa were about 8 degrees, 0 degrees, and 0 degrees, respectively. With the samples prepared at 10 and 10(3) Pa, photooxidation reactions proceeded in the topmost region closest to the surface, while at 10(5) Pa photooxidation was found to be greatly enhanced in the deeper regions, as evidenced by angle-resolved X-ray photoelectron spectroscopy. Photoetching rates were determined through atomic force microscope observation of microstructured PS samples prepared by a simple mesh-contact method. As estimated from AFM images of the latticed microstructures obtained, the rates of samples prepared at 10(3) and 10(5) Pa were about 1.5 and 1.3 nm/min, respectively. However, no photoetched features were observable on the sample surface prepared at 10 Pa. Hydrophilic stability also varied greatly depending on atmospheric pressure. The hydrophilicity of samples treated at 10 and 10(3) Pa gradually decreased as they were exposed to air. On the other hand, the sample surface prepared at 10(5) Pa showed excellent hydrophilicity even after being left in air for 30 days.

2245. Szymczyk, K., “Wettability of polymeric solids by ternary mixtures composed of hydrocarbon and fluorocarbon nonionic surfactants,” J. Colloid and Interface Science, 363, 223-231, (Nov 2011).

Contact angle (θ) measurements on poly(tetrafluoroethylene) (PTFE) and polymethyl methacrylate (PMMA) surface were carried out for the systems containing ternary mixtures of surfactants composed of: p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100), Triton X-165 (TX165) and Triton X-114 (TX114), and fluorocarbon surfactants, Zonyl FSN100 (FSN100) and Zonyl FSO100 (FSO100). The aqueous solutions of ternary surfactant mixtures were prepared by adding TX114, FSN100 or FSO100 to binary mixtures of TX100+TX165, where the synergistic effect in the reduction of the surface tension of water (γ(LV)) was determined. From the obtained contact angle values, the relationships between cosθ, the adhesion tension and surface tension of solutions, cosθ and the reciprocal of the surface tension were determined. On the basis of these relationships, the correlation between the critical surface tension of PTFE and PMMA wetting and the surface tension of these polymers as well as the work of adhesion of aqueous solutions of ternary surfactant mixtures to PTFE and PMMA surface were discussed. The critical surface tension of PTFE and PMMA wetting, γ(C), determined from the contact angle measurements of aqueous solutions of surfactants including FSN100 or FSO100 was also discussed in the light of the surface tension changes of PTFE and PMMA under the influence of film formation by fluorocarbon surfactants on the surface of these polymers. The γ(C) values of the studied polymeric solids were found to be different for the mixtures composed of hydrocarbon surfactants in comparison with those of hydrocarbon and fluorocarbon surfactants. In the solutions containing fluorocarbon surfactants, the γ(C) values were different taking into account the contact angle in the range of FSN100 and FSO100 concentration corresponding to their unsaturated monolayer at water-air interface or to that saturated.

2246. Hou, W., L. Zhang, and Y. Long, “Study on the wettability of polyethylene film fabricated at lower temperature,” J. Colloid and Interface Science, 362, 629-632, (Oct 2011).

Polyethylene films were prepared with phase separation at lower temperatures. The wettability of such films varied from hydrophobicity to superhydrophobicity as the processing temperature decreased owing to the increase of surface roughness. Storing the as-prepared films at subzero temperature (−15 °C), it was found that the water contact angle of the film decreased obviously, and the decrease depended on the corresponding roughness. Further keeping the as-prepared films at room temperature for 30 min, the water contact angle would return to the normal value, which indicated that the reversible switching of surface wettability can be controlled by the environmental temperature.

2247. Diaz, M.E., J. Fuentes, R.L. Cerro, and M.D. Savage, “Hysteresis during contact angles measurement,” J. Colloid and Interface Science, 343, 574-583, (Mar 2010).

A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

2248. Park, S.-J., H.-J. Sohn, S.-K. Hong, and G.-S. Shin, “Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film,” J. Colloid and Interface Science, 332, 246-250, (Apr 2009).

Plasma treatment of polyimide surfaces not only causes structural modification during the plasma exposure, but also leaves active sites on the surfaces that are subject to post-reaction. In this work, the effects of atmospheric fluorine plasma treatment on the surface properties and dielectric properties of polyimide thin film were investigated by using X-ray photoelectron spectroscopy (XPS), Fourier transform-IR (FT-IR) spectroscopy, and contact angle measurement. The results indicated that plasma treatment successfully introduced fluorine functional groups on the polyimide surfaces. The polyimides also exhibited good thermal stability and a lower dielectric constant. It appears that the replacement of fluorine led to the decrease of the local electronic polarizability of polyimide. Consequently, it was found that the atmospheric fluorine plasma-treated polyimides possessed lower dielectric characteristics than the untreated polyimides.

2249. Tag, C.M., M. Pykonen, J.B. Rosenhelm, and K. Backfolk, “Wettability of model fountain solutions: The influence on topo-chemical and -physical properties of offset paper,” J. Colloid and Interface Science, 330, 428-436, (Feb 2009).

The surface chemical and physical character of offset paper was studied before and after application of model fountain solutions based on isopropyl alcohol and an alcohol-free surfactant solution. The paper surface features were characterised with atomic force microscopy and the surface energies were determined by contact angle measurements. Changes in the surface chemical properties induced by the fountain solutions were investigated with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Coated papers wetted with the surfactant solution revealed a slight increase in the root mean square roughness, but the isopropyl alcohol solution led to no observable changes. The change in sub-micro roughness is ascribed not only to substrate swelling or migration of coating constituents but also to the presence of surfactant on the surface. A change in the surface energy and particularly the polar contribution was observed after application of the surfactant solution. The X-ray photoelectron spectroscopy showed an increase in the oxygen-to-carbon ratio, which confirms the presence of surfactant on the surface. Time-of-flight secondary ion mass spectroscopy showed that the isopropyl alcohol solution did not change the elemental composition of the surface whereas the surfactant solution clearly did so. The distribution of surfactant on the surface was confirmed by mapping the characteristic fragments of the molecule.

2281. Penn., L.S., and B. Miller, “A study of the primary causes of contact angle hysteresis on some polymeric solids,” J. Colloid and Interface Science, 78, 238-241, (Nov 1980).

2284. van Oss, C.J., L. Ju, M.K. Chaudhury, and R.J. Good, “Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels,” J. Colloid and Interface Science, 128, 313-319, (Mar 1989).

2289. Della Volpe, C., and S. Siboni, “Some reflections on acid-base solid surface free energy theories,” J. Colloid and Interface Science, 195, 121-136, (Nov 1997).

2330. Kim, J.-S., Y.-K. Kim, and K.-H. Lee, “Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene-vinyl acetate/polyurethane composites,” J. Colloid and Interface Science, 271, 187-191, (Mar 2004).

The surface characteristics of ethylene-vinyl acetate (EVA) were modified by argon, air, and oxygen plasma at atmospheric pressure. The surface energies of the EVA were evaluated by contact angles according to a sessile-drop method and adhesion energy (G(IC)) was estimated by a 180 degrees peel test with polyurethane (PU). After the plasma treatments, the surface free energies (or specific polar component) of the EVA increased about five times compared to that of virgin EVA. The adhesion between the EVA and the PU is significantly improved by the plasma treatment. Especially, Ar/air/O(2) plasma treatment increases G(IC) of EVA/PU up to about 600% compared to that of the sample using virgin EVA.

2449. Park, S.-J., and H.-Y. Lee, “Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film,” J. Colloid and Interface Science, 285, 267-272, (May 2005).

In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system.

2450. Kwon, O.-J., S.-W. Myung, C.-S. Lee, and H.-S. Choi, “Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma,” J. Colloid and Interface Science, 295, 409-416, (Mar 2006).

In an attempt to modify the hydrophobic surface properties of polypropylene (PP) films, this study examined the optimum process parameters of atmospheric pressure plasma (APP) using Ar gas. Under optimized conditions, the effects of a mixed gas (Ar/O2) plasma treatment on the surface-free energy of a PP film were investigated as a function of the O2 content. The polar contribution of the surface-free energy of the PP film increased with increasing O2 content in the gas mixture. However, slightly more oxygen-containing polar functional groups such as CO, CO, and COO were introduced on the PP film surface by the Ar gas only rather than by the Ar/O2 gas mixture. In addition, AFM analysis showed that the Ar plasma treatment of the PP film produced the smoothest surface as a result of the relatively homogeneous etching process.

2543. Kim, J., M.K. Chaudhury, and M.J. Owen, “Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge,” J. Colloid and Interface Science, 226, 231-236, (Jun 2000).

2687. Chibowski, E., L. Holysz, G.A.M. Kip, A. van Silfhout, and H.J. Busscher, “Surface free energy components of glass from ellipsometry and zeta potential measurements,” J. Colloid and Interface Science, 132, 54-61, (1989).

2780. Jones, W.C., and M.C. Porter, “A method for measuring contact angles on fibres,” J. Colloid and Interface Science, 24, 1+, (1967).

2787. Meiron, T.S., A. Marmur, and I.S. Saguy, “Contact angle measurement on rough surfaces,” J. Colloid and Interface Science, 274, 637-644, (Jun 2004).

A new method for the measurement of apparent contact angles at the global energy minimum on real surfaces has been developed. The method consists of vibrating the surface, taking top-view pictures of the drop, monitoring the drop roundness, and calculating the contact angle from the drop diameter and weight. The use of the new method has been demonstrated for various rough surfaces, all having the same surface chemistry. In order to establish the optimal vibration conditions, the proper ranges for the system parameters (i.e., drop volume, vibration time, frequency of vibration, and amplitude of vibration) were determined. The reliability of the method has been demonstrated by the fact that the ideal contact angles of all surfaces, as calculated from the Wenzel equation using the measured apparent contact angles, came out to be practically identical. This ideal contact angle has been compared with three methods of calculation from values of advancing and receding contact angles.

2865. Newman, S., “The effect of composition on the critical surface tension of polyvinyl butyral,” J. Colloid and Interface Science, 25, 341-345, (Nov 1967).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->

 Build ID built-Jan 3 2011-13:54:18
 Page ID 4230021181
 MGI Version 3.2.3
 MGI Region Path /
 Virtual Host Name dev.accudynetest.com
 Parameter Count 0
 Parameter List 
 Tag Body 
 Page Variable Count 21
 Page Variable List mgiSBShippingTotal="0.00"
 bibVar_Page="30"
 tIndex="8"
 bibVar_ResultCount="3022"
 prevURL="bibliography2.html?pageID=29&bibsort=publisher"
 nextURL="bibliography2.html?pageID=31&bibsort=publisher"
 bibsort="publisher"
 bibVar_LastPage="76"
 token=""
 mgiSBSubtotal="0.00"
 bibVar_FirstIndex="1161"
 bibVar_PrevPage="29"
 textURL="bibliography2.html?pageID=76&bibsort=publisher"
 bibVar_NextPage="31"
 searchstring="NOT auth='' ORDER BY publname"
 mgiSBTotal="0.00"
 numberURL="| <a href="bibliography2.html?pageID=1&bibsort=publisher" class="numURL">1</a> | <a href="bibliography2.html?pageID=2&bibsort=publisher" class="numURL">2</a> | <a href="bibliography2.html?pageID=3&bibsort=publisher" class="numURL">3</a> | <a href="bibliography2.html?pageID=4&bibsort=publisher" class="numURL">4</a> | <a href="bibliography2.html?pageID=5&bibsort=publisher" class="numURL">5</a> | <a href="bibliography2.html?pageID=6&bibsort=publisher" class="numURL">6</a> | <a href="bibliography2.html?pageID=7&bibsort=publisher" class="numURL">7</a> | <a href="bibliography2.html?pageID=8&bibsort=publisher" class="numURL">8</a> | <a href="bibliography2.html?pageID=9&bibsort=publisher" class="numURL">9</a> | <a href="bibliography2.html?pageID=10&bibsort=publisher" class="numURL">10</a> | <a href="bibliography2.html?pageID=11&bibsort=publisher" class="numURL">11</a> | <a href="bibliography2.html?pageID=12&bibsort=publisher" class="numURL">12</a> | <a href="bibliography2.html?pageID=13&bibsort=publisher" class="numURL">13</a> | <a href="bibliography2.html?pageID=14&bibsort=publisher" class="numURL">14</a> | <a href="bibliography2.html?pageID=15&bibsort=publisher" class="numURL">15</a> | <a href="bibliography2.html?pageID=16&bibsort=publisher" class="numURL">16</a> | <a href="bibliography2.html?pageID=17&bibsort=publisher" class="numURL">17</a> | <a href="bibliography2.html?pageID=18&bibsort=publisher" class="numURL">18</a> | <a href="bibliography2.html?pageID=19&bibsort=publisher" class="numURL">19</a> | <a href="bibliography2.html?pageID=20&bibsort=publisher" class="numURL">20</a> | <a href="bibliography2.html?pageID=21&bibsort=publisher" class="numURL">21</a> | <a href="bibliography2.html?pageID=22&bibsort=publisher" class="numURL">22</a> | <a href="bibliography2.html?pageID=23&bibsort=publisher" class="numURL">23</a> | <a href="bibliography2.html?pageID=24&bibsort=publisher" class="numURL">24</a> | <a href="bibliography2.html?pageID=25&bibsort=publisher" class="numURL">25</a> | <a href="bibliography2.html?pageID=26&bibsort=publisher" class="numURL">26</a> | <a href="bibliography2.html?pageID=27&bibsort=publisher" class="numURL">27</a> | <a href="bibliography2.html?pageID=28&bibsort=publisher" class="numURL">28</a> | <a href="bibliography2.html?pageID=29&bibsort=publisher" class="numURL">29</a> | 30 | <a href="bibliography2.html?pageID=31&bibsort=publisher" class="numURL">31</a> | <a href="bibliography2.html?pageID=32&bibsort=publisher" class="numURL">32</a> | <a href="bibliography2.html?pageID=33&bibsort=publisher" class="numURL">33</a> | <a href="bibliography2.html?pageID=34&bibsort=publisher" class="numURL">34</a> | <a href="bibliography2.html?pageID=35&bibsort=publisher" class="numURL">35</a> | <a href="bibliography2.html?pageID=36&bibsort=publisher" class="numURL">36</a> | <a href="bibliography2.html?pageID=37&bibsort=publisher" class="numURL">37</a> | <a href="bibliography2.html?pageID=38&bibsort=publisher" class="numURL">38</a> | <a href="bibliography2.html?pageID=39&bibsort=publisher" class="numURL">39</a> | <a href="bibliography2.html?pageID=40&bibsort=publisher" class="numURL">40</a> | <a href="bibliography2.html?pageID=41&bibsort=publisher" class="numURL">41</a> | <a href="bibliography2.html?pageID=42&bibsort=publisher" class="numURL">42</a> | <a href="bibliography2.html?pageID=43&bibsort=publisher" class="numURL">43</a> | <a href="bibliography2.html?pageID=44&bibsort=publisher" class="numURL">44</a> | <a href="bibliography2.html?pageID=45&bibsort=publisher" class="numURL">45</a> | <a href="bibliography2.html?pageID=46&bibsort=publisher" class="numURL">46</a> | <a href="bibliography2.html?pageID=47&bibsort=publisher" class="numURL">47</a> | <a href="bibliography2.html?pageID=48&bibsort=publisher" class="numURL">48</a> | <a href="bibliography2.html?pageID=49&bibsort=publisher" class="numURL">49</a> | <a href="bibliography2.html?pageID=50&bibsort=publisher" class="numURL">50</a> | <a href="bibliography2.html?pageID=51&bibsort=publisher" class="numURL">51</a> | <a href="bibliography2.html?pageID=52&bibsort=publisher" class="numURL">52</a> | <a href="bibliography2.html?pageID=53&bibsort=publisher" class="numURL">53</a> | <a href="bibliography2.html?pageID=54&bibsort=publisher" class="numURL">54</a> | <a href="bibliography2.html?pageID=55&bibsort=publisher" class="numURL">55</a> | <a href="bibliography2.html?pageID=56&bibsort=publisher" class="numURL">56</a> | <a href="bibliography2.html?pageID=57&bibsort=publisher" class="numURL">57</a> | <a href="bibliography2.html?pageID=58&bibsort=publisher" class="numURL">58</a> | <a href="bibliography2.html?pageID=59&bibsort=publisher" class="numURL">59</a> | <a href="bibliography2.html?pageID=60&bibsort=publisher" class="numURL">60</a> | <a href="bibliography2.html?pageID=61&bibsort=publisher" class="numURL">61</a> | <a href="bibliography2.html?pageID=62&bibsort=publisher" class="numURL">62</a> | <a href="bibliography2.html?pageID=63&bibsort=publisher" class="numURL">63</a> | <a href="bibliography2.html?pageID=64&bibsort=publisher" class="numURL">64</a> | <a href="bibliography2.html?pageID=65&bibsort=publisher" class="numURL">65</a> | <a href="bibliography2.html?pageID=66&bibsort=publisher" class="numURL">66</a> | <a href="bibliography2.html?pageID=67&bibsort=publisher" class="numURL">67</a> | <a href="bibliography2.html?pageID=68&bibsort=publisher" class="numURL">68</a> | <a href="bibliography2.html?pageID=69&bibsort=publisher" class="numURL">69</a> | <a href="bibliography2.html?pageID=70&bibsort=publisher" class="numURL">70</a> | <a href="bibliography2.html?pageID=71&bibsort=publisher" class="numURL">71</a> | <a href="bibliography2.html?pageID=72&bibsort=publisher" class="numURL">72</a> | <a href="bibliography2.html?pageID=73&bibsort=publisher" class="numURL">73</a> | <a href="bibliography2.html?pageID=74&bibsort=publisher" class="numURL">74</a> | <a href="bibliography2.html?pageID=75&bibsort=publisher" class="numURL">75</a> | <a href="bibliography2.html?pageID=76&bibsort=publisher" class="numURL">76</a>"
 page="30"
 iatatest=""
 bibVar_LastIndex="1200"
 searchString1="token = ''"
 HTML POST Argument Count 0
 HTML POST Argument List 
 URL Path Argument Count 2
 URL Path Argument List bibsort="publisher"
 pageID="30"
 CGI AUTH_TYPE 
 CGI CONTENT_LENGTH 
 CGI CONTENT_TYPE 
 CGI GATEWAY_INTERFACE CGI/1.1
 CGI HTTP_ACCEPT */*
 CGI HTTP_REFERER 
 CGI HTTP_USER_AGENT Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
 CGI PATH_INFO 
 CGI QUERY_STRING bibsort=publisher&pageID=30
 CGI REMOTE_ADDR 3.15.7.7
 CGI REMOTE_HOST 
 CGI REMOTE_IDENT 
 CGI REMOTE_USER 
 CGI REQUEST_METHOD GET
 CGI SCRIPT_NAME /bibliography2.html
 CGI SERVER_PORT 80
 CGI SERVER_PROTOCOL 
 CGI SERVER_NAME dev.accudynetest.com
 CGI SERVER_SOFTWARE MGI Apache