Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 3 of 76, ordered by
 

2580. Kemppi, A., “Studies on the adhesion between paper and low density polyethylene (PhD thesis),” Abo Akademi, 1997.

542. Padday, J.F., ed., Wetting, Spreading, and Adhesion, Academic Press, 1978.

603. Yasuda, H.K., Plasma Polymerization, Academic Press, 1985.

657. Wu, S., “Interfacial energy, structure and adhesion between polymers,” in Polymer Blends, Vol. 1, Paul, D.R., and S. Newman, eds., Academic Press, 1978.

870. Israelachvili, J., Intermolecular & Surface Forces, 2 ed., Academic Press, 1992.

1324. Neumann, A.W., “Contact angles,” in Wetting, Spreading and Adhesion, Padday, J.F., ed., 3-35, Academic Press, 1978.

1336. Neumann, A.W., Y. Harnoy, D. Stanga, and A.V. Rapacchietta, “Temperature dependence of contact angles on polyethylene terephthalate,” in Colloid and Interface Science, Vol. 3, Kerker, M., ed., 301-312, Academic Press, 1976.

2332. Elliott, G.E.P., T.A. Elliott, S.M. Rowan, and I.D. Severn, “The influence of the surface coating on the wettability of nylon 6 fibres,” in Wetting, Spreading and Adhesion, Padday, J.F., ed., 391-402, Academic Press, 1978.

2333. Severn, I.D., and S.L. Burring, “The wetting properties of lithographic printing surfaces,” in Wetting, Spreading and Adhesion, Padday, J.F., ed., 403-421, Academic Press, 1978.

2556. Oravcova, A., and I. Hudec, “The influence of atmospheric pressure plasma treatment on surface properties of polypropylene films,” Acta Chimica Solvaca, 3, 57-62, (2010).

In this work the influence of the atmospheric pressure plasma treatment on the surface properties of polypropylene (PP) films was investigated. The film samples were modified by atmospheric pressure plasma treatment by diffuse coplanar surface barrier discharge (DCSBD) using ambient air as working gas. The contact angle measurement, the test pen method, atomic force microscopy (AFM) and attenuated total reflection technique Fourier transformed infrared spectroscopy (ATR-FTIR) were applied to analyze the changes of the surface of the polymer film. In all experiments, the contact angle of the treated polypropylene samples decreased and the surface energy of the samples increased in comparison with the plasma untreated samples. The proper surface energy for printing using solvent-based inks was detected by all the samples. There were not observed any significant changes in mechanical properties of the films after plasma treatment by measuring their tear parameters.

1313. Augsburg, A., K. Grundke, K. Poschel, H.-J. Jacobasch, and A.W. Neumann, “Determination of contact angles and solid surface tensions of poly(4-X-styrene) films,” Acta Polymerica, 49, 417-426, (1998).

2548. Little, U., F. Buchanon, E. Harkin-Jones, B. Graham, B. Fox, et al, “Surface modification of poly(epsilon-capralactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode,” Acto Biomaterialia, 5, 2025-2032, (Jul 2009).

The role of roughening and functionalization processes involved in modifying the wettability of poly(ε-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of CDouble BondO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of CDouble BondO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.

1029. Friedrich, J., “Plasma treatment of polymers,” Adhasion Kleben & Dichten, 41, 28-33, (1997).

608. Zorll, U., “Significance and problem of the critical surface tension,” Adhesion, 18, 262+, (1974).

1022. Sullivan, N., M.C. Branch, M. Ulsh, and M. Strobel, “Flame treatment of polyolefin materials: Characterisation of gas phase phenomena,” in 20th Annual Anniversary Meeting Conference Proceedings, 101-103, Adhesion Society, 1997.

1031. Weitzsacker, C.L., N. Dontula, A. Centeck, M.J. Ricj, and L.T. Drzal, “Utilising x-ray photoelectron spectroscopy to investigate modified polymer surfaces,” in 20th Annual Anniversary Meeting, 641-643, Adhesion Society, 1997.

1032. Bodio, F., N. Compiegne, L. Kohler, J.J. Pireauz, and R. Cuadano, “Tailoring the SiOx-polypropylene interface through plasma pretreatment: A test case for the acid-base concept,” in 20th Annual Anniversary Meeting, 41-44, Adhesion Society, 1997.

1045. Walzak, M.J., J.M. Hill, C. Huctwith, M.L Wagter, and D.H. Hunter, “AFM and FTIR-ATR in study of UV/ozone modified surfaces of polyethyleneterephthalate and polypropylene,” in 20th Annual Anniversary Meeting, 505-508, Adhesion Society, 1997.

187. Kaplan, S.L., “Applications for plasma surface treatment in the medical industry,” Adhesives & Sealants Industry, 7, 36-39, (Apr 2000).

59. Chen, G.-F., “Double-edged sword: Adhesion to polyolefin surfaces represents both technical and practical challenges,” Adhesives Age, 42, 29-32, (Oct 1999).

157. Harrington, W., “Corona treating aids bonding,” Adhesives Age, 40, 52, (Jun 1997).

228. Mackey, C.D., “Good adhesive bonding starts with surface preparation,” Adhesives Age, 41, 30-32, (Jun 1998).

490. Jackson, L.C., “Surface characterization based on solubility parameters,” Adhesives Age, 19, 17+, (Oct 1976).

1078. Blitshteyn, M., B.C. McCarthy, and T.E. Sapielak, “Electrical surface treatment improves adhesive bonding,” Adhesives Age, 37, 20-23, (Dec 1994).

1441. Teltech Resources Network Corp., “Low surface energy substrates present bonding challenges,” Adhesives Age, 39, 38-44, (Oct 1996).

1451. Botwell, M., “Meeting focuses on adhesion and surface analysis,” Adhesives Age, 35, 51-52, (Jul 1992).

1515. Devine, A.T., and M.J. Bodnar, “Effects of various surface treatments on adhesive bonding of polyethylene,” Adhesives Age, 12, 35, (May 1969).

2144. Hozbor, M., “Plasma processes boost bondability of rubber and metal,” Adhesives Age, (Dec 1993).

1439. Kaplan, S.L., and D.J. Naab, “PSAs tenaciously bond to non-stick film after plasma treatment,” Adhesives and Sealants Industry, 8, 40-42, (Feb 2001).

2097. van der Leeden, M.C., and G. Frens, “Surface properties of plastic materials in relation to their adhering performance,” Advanced Engineering Materials, 4, 280-289, (2002).

1563. Lee, M.J., N.Y. Lee, J.R. Lim, J.B. Kim, M. Kim, H.K. Baik, and Y.S. Kim, “Antiadhesion surface treatments of molds for high resolution unconventional lithography,” Advanced Materials, 18, 3115-3119, (Dec 2006).

The capability of the PDMS based antiadhesion surface treatment strategy for high resolution unconventional lithography using hard or soft molds as representatives of imprint lithography or soft lithography was investigated. A thin film of PDMs was used as an antiadhesion release layer as PDMS has a fairly low surface energy and allows for the easy release of the mold from the patterned polymer on the substrates. The surface of the Si wafer was coated with a thin film of PDMS and using this PDMS-coated Si wafer as a hard mold line/space patterns were printed on the SU-8-coated PET substrates. Using this photoresist replica mold as a template for a soft mold the same PDMS-based coating strategy was applied. The imprinting of nanostructure-patterned mold onto a polymer composed of the same chemical as the mold led to pattern collapse during the release of the assembly because of the extremely strong adhesion between the mold and the polymer.

2965. Altay, B.N., R. Ma, P.D. Fleming, M.J. Joyce, A. Anand, et al, “Surface free energy estimation: A new methodology for solid surfaces,” Advanced Materials Interfaces, 7, (Mar 2020).

An interpretation of solid surfaces is generated based on physical considerations and the laws of thermodynamics. Like the widely used Owens–Wendt (OW) method, the proposed method uses liquids for characterization. Each liquid provides an absolute lower bound on the surface energy with some uncertainty from measurement variations. If multiple liquids are employed, the largest lower bound is taken as the most accurate, with uncertainty due to measurement errors. The more liquids used, the more accurate is the greatest lower bound. This method links generalizations of the Good–Girifalco equation with a general thermodynamic inequality relating the three-interfacial tensions in a three-phase equilibrium system. The method always satisfies this inequality with better than a 65% certainty. However, the OW seldom, if ever, conforms to this inequality and even then, the degree of satisfaction is insignificant. A reconciliation of the two methods is proposed based on rescaling the OW surface energies to conform to the inequality. This enables interpretations of dispersion and polar components of the surface energy, which are thermodynamically self-consistent. The proposed method is also capable of dealing with material exchange between liquid and solid phases, when the surface tension and contact angle of the saturated liquids can be measured.

911. no author cited, “Discussion of activated gas plasma process,” Advanced Plasma Systems, Inc., 1993.

644. Lipatov, Y., and A. Feinerman, “Surface tension and surface free energy of polymers,” Advances in Colloid and Interface Science, 11, 195+, (1979).

815. Kloubek, J., “Development of methods for surface free energy determination using contact angles of liquids on solids,” Advances in Colloid and Interface Science, 38, 99-142, (Mar 1992).

1298. Li, D., and A.W. Neumann, “Thermodynamics of contact angle phenomena in the presence of a thin liquid film,” Advances in Colloid and Interface Science, 36, 125-151, (1991).

1299. Li, D., and A.W. Neumann, “Equation of state for interfacial tensions of solid-liquid systems,” Advances in Colloid and Interface Science, 39, 299-345, (1992).

1300. Moy, E., and D. Li, “Solid/fluid interfacial tensions of solid-liquid systems: Corroboration by independent approaches,” Advances in Colloid and Interface Science, 39, 257-297, (1992).

1319. Kwok, D.Y., and A.W. Neumann, “Contact angle measurement and contact angle interpretation,” Advances in Colloid and Interface Science, 81, 167-249, (1999).

1594. Li, D., P. Cheng, and A.W. Neumann, “Contact angle measurement by axisymmetric drop shape analysis (ADSA),” Advances in Colloid and Interface Science, 39, 347+, (1992).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->