ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 29 of 76, ordered by
1314. Kwok, D.Y., A. Leung, C.N.C. Lam, A. Li, R. Wu, and A.W. Neumann, “Low-rate dynamic contact angles on poly(methyl methacrylate) and the determination of solid surface tensions,” J. Colloid and Interface Science, 206, 44-51, (1998).
1318. Wulf, M., S. Michel, K. Grundke, O.I. del Rio, D.Y. Kwok, and A.W. Neumann, “Simultaneous determination of surface tension and density of polymer melts using axisymmetric drop shape analysis,” J. Colloid and Interface Science, 210, 172-181, (1999).
1323. Neumann, A.W., and R.J. Good, “Thermodynamics of contact angles, I. Heterogeneous solid surfaces,” J. Colloid and Interface Science, 38, 341-358, (1972).
1483. Greiveldinger, M., and M.E.R. Shanahan, “A critique of the mathematical coherence of acid-base interfacial free energy theory,” J. Colloid and Interface Science, 215, 170-178, (1999).
1486. Kumar, A., and S. Hartland, “Measurement of contact angles from the shape of a drop on a vertical fiber,” J. Colloid and Interface Science, 136, 455-469, (1990).
1488. Mullins, B.J., I. Agranovski, R.D. Braddock, and C.M. Ho, “Effect of fiber orientation on fiber wetting process,” J. Colloid and Interface Science, 269, 449-458, (2004).
The current work incorporates a microscopic study of the effect of fiber orientation on the fiber wetting process and flow of liquid droplets along filter fibers when subjected to airflow and gravity forces. Glass filter fibers in various combinations were oriented at various angles within a plane defined by the airflow direction and were supplied with distilled water in aerosol form. The behavior and flow of the liquid collected by the fibers were observed and measured using a specially developed microscope cell, detailed in the paper. The experimental results were compared to a theoretical model developed to describe the behavior. The theory and experimental results showed good agreement. The developed theory allows an optimum angle to be determined for the internal filter fiber structure in the design of wet filters. A sensitivity analysis of the model was conducted to determine the most important parameters. This will aid design of wet filtration systems such that maximal self-cleaning can be accomplished with minimal water use.
1490. Allain, C., D. Ausserre, and F. Rondelez, “A new method for contact angle measurement of sessile drops,” J. Colloid and Interface Science, 107, 5, (1985).
1597. Gaydos, J., and A.W. Neumann, “The dependence of contact angles on drop size and line tension,” J. Colloid and Interface Science, 76, 120+, (1987).
1654. Good, R.J., “Spreading pressure and contact angle,” J. Colloid and Interface Science, 52, 308, (1975).
1657. Good, R.J., and M.N. Koo, “The effect of drop size on contact angle,” J. Colloid and Interface Science, 71, 283, (1979).
1737. Efimenko, K., W.E. Wallace, and J. Genzer, “Surface modification of Sylgard 184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment,” J. Colloid and Interface Science, 254, 306-315, (2002).
1763. Yuk, S.H., and M.S. Jhon, “Contact angles on deformable solids,” J. Colloid and Interface Science, 110, 252, (1986).
1764. Yuk, S.H., and M.S. Jhon, “Temperature dependence of the contact angle at the polymer-water interface,” J. Colloid and Interface Science, 116, 25, (1987).
1772. Wu, S., “Surface and interfacial tensions of polymer melts I: Polyethylene, polyisobutylene, and polyvinyl acetate,” J. Colloid and Interface Science, 31, 153-161, (Oct 1969).
1773. Bargeman, D., “Contact angles on nonpolar solids,” J. Colloid and Interface Science, 40, 344-348, (Sep 1972).
1776. Bhatia, Q.S., J.-K. Chen, J.T. Koberstein, J.E. Sohn, and J.A. Emerson, “The measurement of polymer surface tension by drop image processing: Application to PDMS and comparison with theory,” J. Colloid and Interface Science, 106, 353-359, (Aug 1985).
1778. Rosano, H.L., W. Gerbacia, M.E. Feinstein, and J.W. Swaine, Jr., “Determination of the critical surface tension using an automatic wetting balance,” J. Colloid and Interface Science, 36, 298-307, (Jul 1971).
1781. Dettre, R.H., and R.E. Johnson, Jr., “Surface properties of polymers I: The surface tensions of some molten polyethylenes,” J. Colloid and Interface Science, 21, 367-377, (Apr 1966).
1784. Carroll, B.J., “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid and Interface Science, 57, 488-495, (Dec 1976).
1785. Busscher, H.J., A.W.J. Van Pelt, H.P. De Jong, and J. Arends, “Effect of spreading pressure on surface free energy determinations by means of contact angle measurements,” J. Colloid and Interface Science, 95, 23-27, (Sep 1983).
1791. El-shimi, A., and E.D. Goddard, “Wettability of some low energy surfaces I: Air/liquid/solid interface,” J. Colloid and Interface Science, 48, 242-248, (Aug 1974).
1793. Dettre, R.H., and R.E. Johnson, Jr., “Surface tensions of perfluoroalkanes and polytetrafluoroethylene,” J. Colloid and Interface Science, 31, 568-569, (Apr 1969).
1796. Hu, P., and A.W. Adamson, “Adsorption and contact angle studies II: Water and organic substances on polished polytetrafluoroethylene,” J. Colloid and Interface Science, 59, 605-614, (May 1977).
1798. Hamilton, W.C., “A technique for the characterization of hydrophilic solid surfaces,” J. Colloid and Interface Science, 40, 219-222, (Aug 1972).
1803. LeGrand, D.G., and G.L. Gaines, Jr., “The molecular weight dependence of polymer surface tension,” J. Colloid and Interface Science, 31, 162-167, (Oct 1969).
1806. Kwok, D.Y., C.J. Budziak, and A.W. Neumann, “Measurement of static and low rate dynamic contact angles by means of an automated capillary rise technique,” J. Colloid and Interface Science, 173, 143-150, (Jul 1995).
1808. Petke, F.D., and B.R. Ray, “Temperature dependence of contact angles of liquids on polymeric solids,” J. Colloid and Interface Science, 31, 216-227, (Oct 1969).
1812. Omenyi, S.N., R.P. Smith, and A.W. Neumann, “Determination of solid/melt interfacial tensions and of contact angles of small particles from the critical velocity of engulfing,” J. Colloid and Interface Science, 75, 117-125, (May 1980).
1817. Rastogi, A.K., and L.E. St. Pierre, “Interfacial phenomena in macromolecular systems III: The surface free-energies of polyethers,” J. Colloid and Interface Science, 31, 168-175, (Oct 1969).
1819. Rastogi, A.K., and L.E. St. Pierre, “Interfacial phenomena in macromolecular systems V: The surface free energies and surface entropies of polyethylene glycols and polypropylene glycols,” J. Colloid and Interface Science, 35, 16-22, (Jan 1971).
1828. Tamai, Y., T. Matsunaga, and K. Horiuchi, “Surface energy analysis of several organic polymers: Comparision of the two-liquid-contact-angle method with the one-liquid-contact-angle method,” J. Colloid and Interface Science, 60, 112-116, (Jun 1977).
1831. Tadros, M.E., P. Hu, and A.W. Adamson, “Adsorption and contact angle studies I: Water on smooth carbon, linear polyethylene, and stearic-acid coated copper,” J. Colloid and Interface Science, 49, 184-195, (Nov 1974).
1833. Starov. V.M., S.R. Kosvintsev, and M.G. Velarde, “Sperading of surfactant solutions over hydrophobic substrates,” J. Colloid and Interface Science, 227, 185-190, (Jul 2000).
1837. Sauer, B.B., and N.V. Dipaolo, “Surface tension and dynamic wetting on polymers using the Wilhelmy method: Applications to high molecular weights and elevated temperatures,” J. Colloid and Interface Science, 144, 527-537, (Jul 1991).
1842. Toyama, M., A. Watanabe, and T. Ito, “Surface wettability of alkyl methacrylate polymers and copolymers (letter),” J. Colloid and Interface Science, 47, 802-803, (1974).
1850. Newman, S., “The effect of composition on the critical surface tension of polyvinyl butyral,” J. Colloid and Interface Science, 25, 341-345, (Nov 1967).
1890. Leroux, F., C. Compagne, A. Perwuelz, and L. Gengembre, “Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure,” J. Colloid and Interface Science, 328, 412-420, (Dec 2008).
Dielectric barrier discharge (DBD) technologies have been used to treat a polypropylene film. Various parameters such as treatment speed or electrical power were changed in order to determine the treatment power impact at the polypropylene surface. Indeed, all the treatments were performed using ambient air as gas to oxidize the polypropylene surface. This oxidation level and the surface modifications during the ageing were studied by a wetting method and by X-ray photoelectron spectroscopy (XPS). Moreover polypropylene film surface topography was analyzed by atomic force microscopy (AFM) in order to observe the surface roughness modifications. These topographic modifications were correlated to the surface oxidation by measuring with a lateral force microscope (LFM) the surface heterogeneity. The low ageing effects and the surface reorganization are discussed.
1985. Lavielle, L., J. Schultz, and A. Sanfeld, “Surface properties of graft polyethylene in contact with water, II: Thermodynamic aspects,” J. Colloid and Interface Science, 106, 446-451, (Aug 1985).
1986. Ponter, A.B., and M. Yetka-fard, “Contact angle variation on polymer surfaces,” J. Colloid and Interface Science, 101, 282-284, (Sep 1984).
1987. Bagnall, R.D., and P.A. Arundel, “Problems with the determination of surface free energy components by solving simultaneous equations,” J. Colloid and Interface Science, 95, 271-272, (Sep 1983).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->