Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 26 of 76, ordered by
 

1276. Jana, T., B.C. Roy, R. Ghosh, and S. Maiti, “Biodegradable film, IV. Printability study on biodegradable film,” J. Applied Polymer Science, 79, 1273-1277, (Feb 2001).

1280. Ogawa, T., H. Mukai, and S. Osawa, “Improvement of the mechanical properties of an ultrahigh molecular weight polyethylene fiber/epoxy composite by corona-discharge treatment,” J. Applied Polymer Science, 79, 1162-1168, (Feb 2001).

1288. Hall, J.R., C.A.L. Westerdahl, A.T. Devine, and M.J. Bodnar, “Activated gas plasma surface treatment of polymers for adhesive bonding,” J. Applied Polymer Science, 13, 2085-2096, (1969).

1297. Budziak, C.J., E.I. Vargha Butler, and A.W. Neumann, “Temperature dependence of contact angles on elastomers,” J. Applied Polymer Science, 42, 1959-1964, (1991).

1326. Wulf, M., K. Grundke, D.Y. Kwok, and A.W. Neumann, “Influence of different alkyl side chains on solid surface tension of polymethacrylates,” J. Applied Polymer Science, 77, 2493-2504, (2000).

1431. Hedenqvist, M.S., A. Merveille, K. Odelius, A.-C. Albertsson, and G. Bergman, “Adhesion of microwave-plasma-treated fluoropolymers to thermoset vinylester,” J. Applied Polymer Science, 98, 838-842, (Oct 2005).

Poly(tetrafluoroethylene) and a fluoroethylene copolymer were surface treated with a 2.45-GHz microwave plasma to enhance their adhesion to a vinylester thermoset. The plasmas were generated with an inert gas (Ar) and with reactive gases (H2, O2, and N2). The lap-joint shear stress was measured on fluoropolymer samples glued with the vinylester. In general, the stress at failure increased with increasing plasma-energy dose. The H2 plasma yielded the best adhesion, and X-ray photoelectron spectroscopy revealed that it yielded the highest degree of defluorination of the fluoropolymer surface. The defluorination efficiency declined in the order H2, Ar, O2, and N2. Contact angle measurements and scanning electron microscopy revealed that the surface roughness of the fluoropolymer depended on the rate of achieving the target energy dose. High power led to a smoother surface, probably because of a greater increase in temperature and partial melting. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 838–842, 2005
https://onlinelibrary.wiley.com/doi/abs/10.1002/app.22174

1435. Park, Y.W., S. Tasaka, and N. Inagaki, “Surface modification of tetrafluoroethylene-hexafluoropropylene (FEP) copolymer by remote hydrogen, nitrogen, oxygen and argon plasmas,” J. Applied Polymer Science, 83, 1258-1267, (Feb 2002).

1585. Hossain, M.M., D. Hegemann, A.S. Herrmann, and P. Chabrecek, “Contact angle determination on plasma-treated poly(ethylene terephthalate) fabrics and foils,” J. Applied Polymer Science, 102, 1452-1458, (2006).

The surfaces of polyester (PET) fabrics and foils were modified by low-pressure RF plasmas with air, CO2, water vapor as well as Ar/O2 and He/O2 mixtures. To increase the wettability of the fabrics, the plasma processing parameters were optimized by means of a suction test with water. It was found that low pressure (10–16 Pa) and medium power (10–16 W) yielded a good penetration of plasma species in the textile structure for all oxygen-containing gases and gaseous mixtures used. While the wettability of the PET fabric was increased in all cases, the Ar/O2 plasma revealed the best hydrophilization effect with respect to water suction and aging. The hydrophilization of PET fabrics was closely related to the surface oxidation and was characterized by XPS analysis. Static and advancing contact angles were determined from the capillary rise with water. Both wetting and aging demonstrated a good comparability between plasma-treated PET fabrics and foils, thus indicating a uniform treatment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1452–1458, 2006
https://onlinelibrary.wiley.com/doi/abs/10.1002/app.24308

1635. Hseih, Y.-L., D.A. Timm, and M. Wu, “Solvent- and glow-discharge-induced surface wetting and morphological changes of poly(ethylene terephthalate) PET,” J. Applied Polymer Science, 38, 1719, (1989).

1685. Klomp, A.J.A., et al, “Treatment of PET nonwoven with a water vapor or carbon dioxide plasma,” J. Applied Polymer Science, 75, 480-494, (2000).

1795. Hybart, F.J., and T.R. White, “The surface tension of viscous polymers at high temperature,” J. Applied Polymer Science, 3, 118-121, (1960).

1813. Nowlin, T.E., and D.F. Smith, Jr., “Surface characterization of plasma-treated poly-p-xylylene films,” J. Applied Polymer Science, 25, 1619-1632, (1980).

1814. Matsunaga, T.J., “Surface free energy analysis of polymers and its relation to surface composition,” J. Applied Polymer Science, 21, 2847-2854, (1977).

2008. Gao, S., and Y. Zeng, “Surface modification of ultrahigh molecular weight polyethylene fibers by plasma treatment I: Improving surface adhesion,” J. Applied Polymer Science, 47, 2065-2071, (Mar 1993).

2018. Sanchis, M.R., O. Calvo, O. Fenollar, D. Garcia, and R. Balart, “Surface modification of a polyurethane film by low pressure glow discharge oxygen plasma treatment,” J. Applied Polymer Science, 105, 1077-1085, (2007).

2026. Sigurdsson, S., and R. Shishoo, “Surface properties of polymers treated with tetrafluoromethane plasma,” J. Applied Polymer Science, 66, 1591-1601, (Nov 1997).

2042. Chen, J.-R., X.-Y. Wang, and T. Wakida, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Applied Polymer Science, 72, 1327-1333, (Jun 1999).

2043. Chen, J.-R., and T. Wakida, “Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma,” J. Applied Polymer Science, 63, 1733-1739, (Mar 1997).

2046. Schreiber, H.P., and M.D. Croucher, “Surface characteristics of solvent-cast polymers,” J. Applied Polymer Science, 25, 1961-1968, (Sep 1980).

2055. Kim, J.H., D.S. Shin, M.H. Han, O.W. Kwon, H.K. Lee, et al, “Surface free energy analysis of poly(vinyl alcohol) films having various molecular parameters,” J. Applied Polymer Science, 105, 424-428, (Jul 2007).

The molecular parameters of poly(vinyl alcohol) have enormous effects on its physical and chemical properties. Therefore, the surface characteristics of poly(vinyl alcohol) films are also determined by the molecular parameters. In this study, the dependence of the surface free energy on the molecular weight, degree of saponification, and stereoregularity of poly(vinyl alcohol) films has been evaluated with contact-angle measurements. The surface free energy of poly(vinyl alcohol) films increases with decreases in the syndiotactic dyad content, molecular weight, and degree of saponification. The polar component of the surface energy is not affected by the deviation of the molecular weight and degree of saponification very much. However, it decreases with increases in the syndiotactic dyad content and ranges from 11.64 to 4.35 dyn/cm.
© 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 https://onlinelibrary.wiley.com/doi/abs/10.1002/app.26010

2061. Goldblatt, R.D., L.M. Ferreiro, S.L. Nunes, et al, “Characterization of water vapor plasma-modified polyimide,” J. Applied Polymer Science, 46, 2189-2202, (Dec 1992).

2069. Han, S., W.-K. Choi, K.H. Yoon, S.-K. Koh, “Surface reaction on polyvinylidenefluoride (PVDF) irradiated by low energy ion beam in reactive gas environment,” J. Applied Polymer Science, 72, 41-47, (1999).

2098. Ulbricht, M., and G. Belfort, “Surface modification of ultrafiltration membranes by low temperature plasma I: Treatment of polyacrylonitrile,” J. Applied Polymer Science, 56, 325-343, (Apr 1995).

2108. Yasuda, T., M. Gazicki, and H. Yasuda, “Effects of glow discharges on fibers and fabrics,” J. Applied Polymer Science, 38, 201-214, (1984).

2109. Matsuzawa, Y., and H. Yasuda, “Semicontinuous plasma polymerization coating onto the inside surface of plastic tubing,” J. Applied Polymer Science, 38, 65-74, (1984).

2110. Bottin, M.F., H.P. Schreiber, J. Klemberg-Sapieha, and M.R. Wertheimer, “Modification of paper surface properties by microwave plasmas,” J. Applied Polymer Science, 38, 193-200, (1984).

2269. Deshmukh, R.R., and A.R. Shetty, “Comparison of surface energies using various approaches and their suitability,” J. Applied Polymer Science, 107, 3707-3717, (Mar 2008).

The surface chemistry and surface energies of materials are important to performance of many products and processes—sometimes in as yet unrecognized ways. This article has been written for the researchers who wish to calculate solid surface energy (SE) from contact angle data. In this article, we describe various methods of calculations and their assumptions. The theoretical and experimental approaches for understanding the solid surface free energy using various methods are discussed in this article. Researchers concerned with many fields such as printing, dyeing, coating, adhesion, pharmaceuticals, composite materials, textiles, polymers, and ceramics should have interest in this topic. SE calculated by various methods for polyethylene surface treated in air plasma is discussed. Using contact angle data, the values of surface roughness using Wenzels equation, have been obtained and correlated to surface roughness calculated from AFM data.
© 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 https://onlinelibrary.wiley.com/doi/abs/10.1002/app.27446

2327. Hall, J.R., C.A.L. Westerdahl, M.J. Bodnar, and D.W. Levi, “Effect of activated gas plasma treatment time on adhesive bondability of polymers,” J. Applied Polymer Science, 16, 1465-1477, (Jun 1972).

2426. Urbaniak-Domagala, W., “Pretreatment of polypropylene films for following technological processes, II: The use of low temperature plasma method,” J. Applied Polymer Science, 122, 2529-2541, (2011).

The surface of polypropylene (PP) films was activated by RF plasma method with the use different gases: argon, air, water vapor, and acetic acid vapor. Plasma was diagnosed based on spectra emitted by gas plasma using the method of optical emission spectroscopy. The effectiveness of these processing gases during plasma treatment was analyzed. The effects of PP activation were assessed with the use of IR-ATR absorption spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and the analysis of the surface free energy components based on liquid contact angle. The activation of PP surface by plasma treatment resulted in the increased energy of PP surface layer to the extent being dependent on the type of processing gases and in the formation of new chemical groups on it. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.34486

2517. Inagaki, N., S. Tasaka, K. Narushima, and H. Kobayashi, “Surface modification of PET films by pulsed argon plasma,” J. Applied Polymer Science, 85, 2845-2852, (Sep 2002).

2518. Inagaki, N., S. Tasaka, and S. Shimada, “Comparative studies on surface modification of poly(ethylene terephthalate) by remote and direct argon plasmas,” J. Applied Polymer Science, 79, 808-815, (Jan 2001).

2686. Shimizu, R.N., and N.R. Demarquette, “Evaluation of surface energy of solid polymers using different methods,” J. Applied Polymer Science, 76, 1831-1845, (2000).

2864. Agbezuge, L., and F. Wieloch, “Estimation of interfacial tension components for liquid-solid system from contact angle measurements,” J. Applied Polymer Science, 27, 271-275, (Jan 1982).

2960. Lindner, M., N. Rodler, M. Jesdinszki, M. Schmid, and S. Sangerlaub, “Surface energy of corona treated PP, PE and PET films, its alteration as function of storage time and the effect of various corona dosages on their bond strength after lamination,” J. Applied Polymer Science, 135, 1-9, (Mar 2018).

The aim of this study was to analyze how corona dosages above recommended levels affect film surface energy and hydrophobic recovery of such treated film surfaces as well as laminate bond strength of laminates made of these films. The adhesive for lamination was a polyurethane-adhesive with a dry film thickness of ∼5 µm. Polar and dispersive parts of the surface energy were measured frequently according to DIN 55660-2 (Owens–Wendt–Rabel-and-Kaelble method) for up to 140 days after corona treatment. The corona dosage had a value of up to 280 W min/m2. Laminate bond strength was measured according to DIN 55543-5. The effect of corona treatment was highest for low-density polyethylene (PE-LD) films, mean for biaxial-oriented polypropylene (PP-BO) films, and lowest for biaxial-oriented poly(ethylene terephthalate) (PET-BO) films. With increasing storage time, surface energy decreased, as expected. The higher the effect of corona treatment, the faster the polar part of surface energy decreased. At PE-LD, laminate bond strength increased with a higher corona dosage from 0.05 to 8.87 mN/15 mm, whereas at PET-BO and PP-BO laminate bond strength was so high that samples teared before delamination during bond strength testing. By our results is shown that corona dosages above recommended levels resulted in higher laminate bond strength. Only at PP-BO a reduction of laminate bond strength due to “overtreatment” was be observed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45842. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.45842

2973. Gupta, B., J. Hilborn, C. Hollenstein, C.J.G. Plummer, R. Houriet, and N. Xanthopoulus, “Surface modification of polyester films by RF plasma,” J. Applied Polymer Science, 78, 1083-1091, (Aug 2000).

2029. Castner, D.G., B.D. Ratner, and A.S. Hoffman, “Surface characterization of a series of polyurethanes by X-ray photoelectron spectroscopy and contact angle methods,” J. Biomaterials Science, 1, 191-206, (1989).

367. Triolo, P.M., and J.D. Andrade, “Surface modification and characterization of commonly used catheter materials,” J. Biomedical Materials Research, 17, 129-147, (1983).

1802. Lelah, M.D., T.G. Grasel, J.A. Pierce, and S.L. Cooper, “The measurement of contact angles on circular tubing surfaces using the captive bubble technique,” J. Biomedical Materials Research, 19, 1011-1015, (1985).

1820. Reichert, W.M., F.E. Filisko, and S.A. Barenberg, “Polyphosphazenes: Effect of molecular motions on thrombogenesis,” J. Biomedical Materials Research, 16, 301-312, (1982).

2770. Kilpadi, D.V., and J.E. Lemons, “Surface energy characterization of unalloyed titanium implants,” J. Biomedical Materials Research, 28, 1419-1425, (Dec 1994).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->