Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 12 of 76, ordered by
 

914. Martinez-Martinez, M., and M.D. Romero-Sanchez, “Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification,” European Physical J. - Applied Physics, 34, 125-138, (2006).

The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally, it has been found that cleaning of SBS rubber in an ultrasonic bath prior to plasma torch treatment produced a partial removal of paraffin waxes from the surface, and thus improved adhesion was obtained.

1578. Palmers, J., “Economic alternative to primers,” European Plastic Product Manufacturer, 51, (Apr 2002).

33. Bonn, R., and J.J. van Aartsen, “Solubility of polymers in relation to surface tension and index of refraction,” European Polymer J., 8, 1055-1066, (1972).

64. Collins, A.G.S., A.C. Lowe, and D. Nicholas, “An analysis of PTFE surfaces modified by exposure to glow discharges,” European Polymer J., 9, 1173-1185, (1973).

298. Poncin-Epaillard, F., B. Chevet, and J.-C. Brosse, “Functionalization of polypropylene by a microwave (433 MHz) cold plasma of carbon dioxide.Surface modification or surface degradation?,” European Polymer J., 26, 333-339, (1990).

1733. Jorda-Vilaplana, A., V. Fombuena, D. Garcia-Garcia, M.D. Samper, and L. Sanchez-Nacher, “Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment,” European Polymer J., 58, 23-33, (Jun 2014).

1851. Dadbin, S., “Surface modification of LDPE film by CO2 pulsed laser irradiation,” European Polymer J., 38, 2489-2495, (Dec 2002).

2062. Sanchis, M.R., V. Blanes, M. Blanes, D. Garcia, and R. Balart, “Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment,” European Polymer J., 42, 1558-1568, (Jul 2006).

In this work, low pressure glow discharge O2 plasma has been used to increase wettability in a LDPE film in order to improve adhesion properties and make it useful for technical applications. Surface energy values have been estimated using contact angle measurements for different exposure times and different test liquids. In addition, plasma-treated samples have been subjected to an aging process to determine the durability of the plasma treatment. Characterization of the surface changes due to the plasma treatment has been carried out by means of Fourier transformed infrared spectroscopy (FTIR) to determine the presence of polar species such as carbonyl, carboxyl and hydroxyl groups. In addition to this, atomic force microscopy (AFM) analysis has been used to evaluate changes in surface morphology and roughness. Furthermore, and considering the semicrystalline nature of the LDPE film, a calorimetric study using differential scanning calorimetry (DSC) has been carried out to determine changes in crystallinity and degradation temperatures induced by the plasma treatment. The results show that low pressure O2 plasma improves wettability in LDPE films and no significant changes can be observed at longer exposure times. Nevertheless, we can observe that short exposure times to low pressure O2 plasma promote the formation of some polar species on the exposed surface and longer exposure times cause slight abrasion on LDPE films as observed by the little increase in surface roughness.

2073. Kaminska, A., H. Kaczmarek, and J. Kowalonek, “The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action,” European Polymer J., 38, 1915-1919, (Sep 2002).

2425. Mrad, O., J. Saunier, C. Aymes-Chodur, V. Mazel, V. Rosilio, et al, “Aging of a medical device surface following cold plasma treatment: Influence of low molecular weight compounds on surface recovery,” European Polymer J., 47, 2403-2413, (2011).

The surface of medical devices is of great importance for biocompatibility. Surface properties can evolve with a material treatment, time, and storage conditions. In this work, poly(urethane) catheters sterilised by cold nitrogen plasma treatment, were subjected to air and temperature aging in order to evaluate the influence of humidity and temperature on surface recovery. The surface of catheters was analysed by contact angle measurements and XPS. Faster surface changes upon aging were observed at high temperature (45 °C) and relative humidity (90%). For the commercial poly(urethane) catheters analysed in this work, the importance of the nature and polymorphism of additives added to the polymer (lubricant, antioxidant) in the recovery process was demonstrated. Indeed, DSC and TSC showed that additive transitions (relaxation, melting…) could govern the aging process.

2527. Sarmadi, A.M., T,.H. Ying, and F. Denes, “HMDSO-plasma modification of polypropylene fibers,” European Polymer J., 31, 847-857, (Sep 1995).

2867. Bright, K., and B.A.W. Simmons, “Testing the level of pretreatment of polyethylene film using critical surface tension measurements,” European Polymer J., 3, 219-222, (May 1967).

2690. no author cited, “Technical background/Substrate wetting additives,” Evonik Industries, 2007.

1546. no author cited, “Wetting tension,” ExxonMobil Chemical Films Europe, Sep 2002.

2935. Eisby, J., “Dyne & decay: Extrusion, storage impact a film's 'shelf life'; time, humidity, additives contribute to contamination,” FLEXO, 47, 36-38, (Apr 2022).

1168. no author cited, “ATmaP (Accelerated Thermo-Molecular Adhesion Process),” FTS Technologies(http://www.ftstechnologies.com/atmap.htm), 2006.

1335. Hellwig, G.E.H., and A.W. Neumann, “Contact angles and wetting energies pertinent to pigment behaviour,” Farbe und Lack, 73, 823-829, (1967).

1437. Kunz. M., and M. Bauer, “Adhesion to plastic,” Farbe und Lack, 107, 54-62, (2001).

2848. no author cited, “Why corona treatment?,” Ferrarini & Benelli,

2850. no author cited, “Plasma and corona surface treatment offer solutions to solve adhesion problems,” Ferrarini & Benelli,

2851. no author cited, “Corona vs. plasma: A comparison between surface treatments,” Ferrarini & Benelli,

2853. no author cited, “Plasma treatment at atmospheric pressure conditions,” Ferrarini & Benelli,

2854. no author cited, “Destructioning the ozone produced by the corona treatment,” Ferrarini & Benelli,

2849. no author cited, “Main applications of plasma treatment,” Ferrarini & Binelli,

1075. Novak, I, D. Lath, S. Florian, M. Dulaj, and J. Sestak, “Some methods for improving the adhesive properties of isotactic polypropylene, I: Modification of polypropylene surface properties via electrical discharge,” Fibres & Textiles in Eastern Europe, 3, 41-42, (Jan 1995).

1662. Melamies, I.A., “A brilliant finish: A new atmospheric plasma pretreatment technology can improve the finish quality on plastics, metal and glass,” Finishing Today, (Mar 2007).

1547. no author cited, “Dyne solution equivalents,” First Ten Angstroms, Aug 2000.

131. Gilbertson, T.J., “The necessity of using pretreated films in converting applications and why inline treating is required,” Flexible Packaging, 2, 36-37, (Apr 2000).

252. Mykytiuk, A., “The 'mystery' of web treating,” Flexible Packaging, 1, 26-30, (Jun 1999).

258. Nolan, M.D., “Treat yourself right: how to avoid unnecessary problems with your in-house treating process,” Flexible Packaging, 1, 35-36, (Jun 1999).

259. Nolan, M.D., “There really is a good side to ozone!,” Flexible Packaging, 3, 26-28, (Sep 2000).

260. Nolan, M.D., “Web treatment - going solventless,” Flexible Packaging, 4, 27-30, (Jan 2002).

275. Opad, J.S., “The theory of surface tension,” Flexible Packaging, 1, 32-33, (Jun 1999).

341. Sigmund, J.J., “A cost-effective solution for controlling ozone emissions from corona treaters,” Flexible Packaging, 2, 21-22, (Aug 2000).

353. Stobbe, B.D., “The problem solver,” Flexible Packaging, 2, 31-32, (Dec 2000).

809. Greig, S., “Corona treatment - an update for running waterbased inks,” Flexible Packaging, 5, 36-39, (May 2003).

931. Nolan, M.D., “Flame treatment: Corona's poor cousin?,” Flexible Packaging, 3, 31-32, (Sep 2000).

1059. Ballard, C., “Surface treatment options for converters of flexible packaging,” Flexible Packaging, 6, 50-51, (Mar 2004).

1070. Mykytiuk, A., “What is the latest in surface treating innovations and trends?,” Flexible Packaging, 6, 29-31, (May 2004).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->

 Build ID built-Jan 3 2011-13:54:18
 Page ID 4230021189
 MGI Version 3.2.3
 MGI Region Path /
 Virtual Host Name dev.accudynetest.com
 Parameter Count 0
 Parameter List 
 Tag Body 
 Page Variable Count 21
 Page Variable List mgiSBShippingTotal="0.00"
 bibVar_Page="12"
 tIndex="8"
 bibVar_ResultCount="3022"
 prevURL="bibliography2.html?pageID=11&bibsort=publisher"
 nextURL="bibliography2.html?pageID=13&bibsort=publisher"
 bibsort="publisher"
 bibVar_LastPage="76"
 token=""
 mgiSBSubtotal="0.00"
 bibVar_FirstIndex="441"
 bibVar_PrevPage="11"
 textURL="bibliography2.html?pageID=76&bibsort=publisher"
 bibVar_NextPage="13"
 searchstring="NOT auth='' ORDER BY publname"
 mgiSBTotal="0.00"
 numberURL="| <a href="bibliography2.html?pageID=1&bibsort=publisher" class="numURL">1</a> | <a href="bibliography2.html?pageID=2&bibsort=publisher" class="numURL">2</a> | <a href="bibliography2.html?pageID=3&bibsort=publisher" class="numURL">3</a> | <a href="bibliography2.html?pageID=4&bibsort=publisher" class="numURL">4</a> | <a href="bibliography2.html?pageID=5&bibsort=publisher" class="numURL">5</a> | <a href="bibliography2.html?pageID=6&bibsort=publisher" class="numURL">6</a> | <a href="bibliography2.html?pageID=7&bibsort=publisher" class="numURL">7</a> | <a href="bibliography2.html?pageID=8&bibsort=publisher" class="numURL">8</a> | <a href="bibliography2.html?pageID=9&bibsort=publisher" class="numURL">9</a> | <a href="bibliography2.html?pageID=10&bibsort=publisher" class="numURL">10</a> | <a href="bibliography2.html?pageID=11&bibsort=publisher" class="numURL">11</a> | 12 | <a href="bibliography2.html?pageID=13&bibsort=publisher" class="numURL">13</a> | <a href="bibliography2.html?pageID=14&bibsort=publisher" class="numURL">14</a> | <a href="bibliography2.html?pageID=15&bibsort=publisher" class="numURL">15</a> | <a href="bibliography2.html?pageID=16&bibsort=publisher" class="numURL">16</a> | <a href="bibliography2.html?pageID=17&bibsort=publisher" class="numURL">17</a> | <a href="bibliography2.html?pageID=18&bibsort=publisher" class="numURL">18</a> | <a href="bibliography2.html?pageID=19&bibsort=publisher" class="numURL">19</a> | <a href="bibliography2.html?pageID=20&bibsort=publisher" class="numURL">20</a> | <a href="bibliography2.html?pageID=21&bibsort=publisher" class="numURL">21</a> | <a href="bibliography2.html?pageID=22&bibsort=publisher" class="numURL">22</a> | <a href="bibliography2.html?pageID=23&bibsort=publisher" class="numURL">23</a> | <a href="bibliography2.html?pageID=24&bibsort=publisher" class="numURL">24</a> | <a href="bibliography2.html?pageID=25&bibsort=publisher" class="numURL">25</a> | <a href="bibliography2.html?pageID=26&bibsort=publisher" class="numURL">26</a> | <a href="bibliography2.html?pageID=27&bibsort=publisher" class="numURL">27</a> | <a href="bibliography2.html?pageID=28&bibsort=publisher" class="numURL">28</a> | <a href="bibliography2.html?pageID=29&bibsort=publisher" class="numURL">29</a> | <a href="bibliography2.html?pageID=30&bibsort=publisher" class="numURL">30</a> | <a href="bibliography2.html?pageID=31&bibsort=publisher" class="numURL">31</a> | <a href="bibliography2.html?pageID=32&bibsort=publisher" class="numURL">32</a> | <a href="bibliography2.html?pageID=33&bibsort=publisher" class="numURL">33</a> | <a href="bibliography2.html?pageID=34&bibsort=publisher" class="numURL">34</a> | <a href="bibliography2.html?pageID=35&bibsort=publisher" class="numURL">35</a> | <a href="bibliography2.html?pageID=36&bibsort=publisher" class="numURL">36</a> | <a href="bibliography2.html?pageID=37&bibsort=publisher" class="numURL">37</a> | <a href="bibliography2.html?pageID=38&bibsort=publisher" class="numURL">38</a> | <a href="bibliography2.html?pageID=39&bibsort=publisher" class="numURL">39</a> | <a href="bibliography2.html?pageID=40&bibsort=publisher" class="numURL">40</a> | <a href="bibliography2.html?pageID=41&bibsort=publisher" class="numURL">41</a> | <a href="bibliography2.html?pageID=42&bibsort=publisher" class="numURL">42</a> | <a href="bibliography2.html?pageID=43&bibsort=publisher" class="numURL">43</a> | <a href="bibliography2.html?pageID=44&bibsort=publisher" class="numURL">44</a> | <a href="bibliography2.html?pageID=45&bibsort=publisher" class="numURL">45</a> | <a href="bibliography2.html?pageID=46&bibsort=publisher" class="numURL">46</a> | <a href="bibliography2.html?pageID=47&bibsort=publisher" class="numURL">47</a> | <a href="bibliography2.html?pageID=48&bibsort=publisher" class="numURL">48</a> | <a href="bibliography2.html?pageID=49&bibsort=publisher" class="numURL">49</a> | <a href="bibliography2.html?pageID=50&bibsort=publisher" class="numURL">50</a> | <a href="bibliography2.html?pageID=51&bibsort=publisher" class="numURL">51</a> | <a href="bibliography2.html?pageID=52&bibsort=publisher" class="numURL">52</a> | <a href="bibliography2.html?pageID=53&bibsort=publisher" class="numURL">53</a> | <a href="bibliography2.html?pageID=54&bibsort=publisher" class="numURL">54</a> | <a href="bibliography2.html?pageID=55&bibsort=publisher" class="numURL">55</a> | <a href="bibliography2.html?pageID=56&bibsort=publisher" class="numURL">56</a> | <a href="bibliography2.html?pageID=57&bibsort=publisher" class="numURL">57</a> | <a href="bibliography2.html?pageID=58&bibsort=publisher" class="numURL">58</a> | <a href="bibliography2.html?pageID=59&bibsort=publisher" class="numURL">59</a> | <a href="bibliography2.html?pageID=60&bibsort=publisher" class="numURL">60</a> | <a href="bibliography2.html?pageID=61&bibsort=publisher" class="numURL">61</a> | <a href="bibliography2.html?pageID=62&bibsort=publisher" class="numURL">62</a> | <a href="bibliography2.html?pageID=63&bibsort=publisher" class="numURL">63</a> | <a href="bibliography2.html?pageID=64&bibsort=publisher" class="numURL">64</a> | <a href="bibliography2.html?pageID=65&bibsort=publisher" class="numURL">65</a> | <a href="bibliography2.html?pageID=66&bibsort=publisher" class="numURL">66</a> | <a href="bibliography2.html?pageID=67&bibsort=publisher" class="numURL">67</a> | <a href="bibliography2.html?pageID=68&bibsort=publisher" class="numURL">68</a> | <a href="bibliography2.html?pageID=69&bibsort=publisher" class="numURL">69</a> | <a href="bibliography2.html?pageID=70&bibsort=publisher" class="numURL">70</a> | <a href="bibliography2.html?pageID=71&bibsort=publisher" class="numURL">71</a> | <a href="bibliography2.html?pageID=72&bibsort=publisher" class="numURL">72</a> | <a href="bibliography2.html?pageID=73&bibsort=publisher" class="numURL">73</a> | <a href="bibliography2.html?pageID=74&bibsort=publisher" class="numURL">74</a> | <a href="bibliography2.html?pageID=75&bibsort=publisher" class="numURL">75</a> | <a href="bibliography2.html?pageID=76&bibsort=publisher" class="numURL">76</a>"
 page="12"
 iatatest=""
 bibVar_LastIndex="480"
 searchString1="token = ''"
 HTML POST Argument Count 0
 HTML POST Argument List 
 URL Path Argument Count 2
 URL Path Argument List bibsort="publisher"
 pageID="12"
 CGI AUTH_TYPE 
 CGI CONTENT_LENGTH 
 CGI CONTENT_TYPE 
 CGI GATEWAY_INTERFACE CGI/1.1
 CGI HTTP_ACCEPT */*
 CGI HTTP_REFERER 
 CGI HTTP_USER_AGENT Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
 CGI PATH_INFO 
 CGI QUERY_STRING bibsort=publisher&pageID=12
 CGI REMOTE_ADDR 3.144.116.57
 CGI REMOTE_HOST 
 CGI REMOTE_IDENT 
 CGI REMOTE_USER 
 CGI REQUEST_METHOD GET
 CGI SCRIPT_NAME /bibliography2.html
 CGI SERVER_PORT 80
 CGI SERVER_PROTOCOL 
 CGI SERVER_NAME dev.accudynetest.com
 CGI SERVER_SOFTWARE MGI Apache