ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 63 of 76, ordered by
1690. Mount, E.M. III, “Substrate secrets: The best film optics for a particular application can be attained via rigid control of surface chemistry and internal and external light-scattering,” Converting, 26, 46-50, (Feb 2008).
2089. Sanchis, M.R., O. Calvo, O. Fenollar, D. Garcia, and R. Balart, “Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film,” Polymer Testing, 27, 75-83, (Feb 2008).
In this work, low-pressure nitrogen plasma has been used to improve wettability in a polyurethane film. Evaluation of wettability changes has been carried out using contact angle measurements. Furthermore, plasma-treated films have been subjected to air aging to evaluate the extent of hydrophobic recovery. X-ray photoelectron spectroscopy (XPS) has been used to study surface functionalization; surface topography changes related with the etching mechanism have been followed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and weight loss study. The results show a considerable improvement in surface wettability even for short exposure times, as observed by a remarkable decrease in contact angle values. The aging study shows a partial hydrophobic recovery due to the re-arrangement of polar species and migration of low molecular oxidized material (LMWOM). In addition to surface activation, SEM and AFM analyses show slight changes in surface topography as a consequence of the plasma-etching mechanism.
2563. Wang, C., J.-R. Chen, and R. Li, “Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma,” Applied Surface Science, 254, 2882-2888, (Feb 2008).
Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108–58° and 65.2°, respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction.
1691. Al-Turaif, H., “Relationship between surface chemistry and surface energy of different shape pigment blend coatings,” J. Coatings Technology and Research, 5, 85-91, (Mar 2008).
The influence of pigment shapes and pigment blends on the surface energy was investigated and compared with the surface chemistry of pigmented latex coatings. The coatings were made of different volume ratios of two pigments: plate-like kaolin clay pigment and prismatic precipitated calcium carbonate (PCC) pigment. These were mixed together with carboxylated styrene–butadiene–acrylonitrile latex (SBA), and applied over nonabsorbent substrates as well as absorbent substrates. The composition of the surface of the coatings was investigated by X-ray photoelectron spectroscopy (XPS). Two approaches were used to estimate the total surface energy and the components of the coatings: a conventional approach—“the Kaelble approach”—and a more modern approach—“the van Oss approach.” Pigment blends with different shapes and increments caused a change in the surface chemistry and the surface energy of the latex coatings. As the prismatic PCC pigment particles increased in the kaolin/SBA coating system, the SBA latex content at the coating surface increased and the total surface energy of the coating decreased. This is valid for both nonabsorbent as well as absorbent substrates. It was found that there was a strong correlation between the surface energy and the surface composition. The surface energy of the coatings estimated by the Van Oss approach was always lower than that estimated by the Kaelble approach. Colloidal interactions between pigment–pigment and/or pigment–binder were thought to play an essential role in determining the final coating surface energy and its components. Changes in the surface latex content and the surface energy due to the different pigment blends investigated were found to fit straight-line equations.
1699. Kondyurin, A., and M. Bilek, “Interactions of ion beam with polymer: Physical picture,” in Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, 1-10, Elsevier, Mar 2008.
1700. Kondyurin, A., and M. Bilek, “Interactions of ion beam with polymer: Chemical picture,” in Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, 29-74, Elsevier, Mar 2008.
1701. Kondyurin, A., and M. Bilek, “Wetting,” in Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, 147-160, Elsevier, Mar 2008.
1702. Berthier, J., “Theory of wetting,” in Microdrops and Digital Microfluidics, 7-74, William Andrew Inc., Mar 2008.
1712. Bishop, C.A., “Problem re ink adhesion to metallized film,” http://www.vacuumcoatingblog.com, Mar 2008.
2269. Deshmukh, R.R., and A.R. Shetty, “Comparison of surface energies using various approaches and their suitability,” J. Applied Polymer Science, 107, 3707-3717, (Mar 2008).
The surface chemistry and surface energies of materials are important to performance of many products and processes—sometimes in as yet unrecognized ways. This article has been written for the researchers who wish to calculate solid surface energy (SE) from contact angle data. In this article, we describe various methods of calculations and their assumptions. The theoretical and experimental approaches for understanding the solid surface free energy using various methods are discussed in this article. Researchers concerned with many fields such as printing, dyeing, coating, adhesion, pharmaceuticals, composite materials, textiles, polymers, and ceramics should have interest in this topic. SE calculated by various methods for polyethylene surface treated in air plasma is discussed. Using contact angle data, the values of surface roughness using Wenzels equation, have been obtained and correlated to surface roughness calculated from AFM data.
© 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 https://onlinelibrary.wiley.com/doi/abs/10.1002/app.27446
1704. Song, S., and F. Placido, “Effect on adhesion of gas release from polymer surfaces,” Presented at 51st Annual Technical Conference, Society of Vacuum Coaters, Apr 2008.
1709. Bishop, C.A., “Delamination problem in adhesive-laminated 3-ply structures of reverse-printed PET:metPET:LLDPE sealant web,” http://www.vacuumcoatingblog.com, Apr 2008.
1710. Bishop, C.A., “Problem with low bond strength of plasma treated metallized film,” http://www.vacuumcoatingblog.com, Apr 2008.
1711. Bishop, C.A., “Question re static: Will the presence of static on the face of a material affect its surface energy?,” http://www.vacuumcoatingblog.com, Apr 2008.
2533. Vesel, A., M. Mozetic, and A. Zalar, “XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma,” Surface and Interface Analysis, 40, 661-663, (Apr 2008).
A study on surface modification of extended PTFE (polytetrafluoroethylene) foil after treatment in oxygen and nitrogen plasma is presented. PTFE was exposed to a weakly ionized, highly dissociated RF plasma with a high density of neutral atoms. The gas pressure was 75 Pa and the discharge power was 200 W. The appearance of the functional groups on the sample surface was determined by using high-resolution XPS. The results showed that oxygen plasma treatment did not cause any noticeable changes in the surface composition, while after nitrogen plasma treatment new functional groups were detected on the surface. Copyright © 2008 John Wiley & Sons, Ltd.
904. Pykonen, M., H. Sundqvist, O.-V. Kaukoniemi, M. Tuominen, J. Lahti, P. Fardim, and M. Toivakka, “Ageing effects in atmospheric plasma activation of paper substrates,” Surface and Coatings Technology, 202, 3777-3786, (May 2008).
This work concerns the ageing effect of the atmospheric plasma and corona treatments when used to treat paper substrates. Pigment coated and surface sized papers were modified using two types of atmospheric plasma equipment; one at the pilot scale and one at the laboratory scale. In addition, the plasma treatments were compared to conventional corona treatment. Surface energy was estimated by contact angle measurements and surface chemistry by X-ray photoelectron spectroscopy (XPS) as a function of the time during three months. The treatments increased surface energy and oxidation level of surface for both papers. The ageing effect could be detected only in the surface energy, whereas the oxidation level remained stable during the twelve weeks. The decay in surface energy was faster during the first weeks of storage and subsequently leveled off leading to a permanent change. The permanent change was explained as a contribution of oxygen containing polar molecular groups, which were detected by XPS. The ageing effect was suggested to originate from already existing polar molecular groups, which have rotated on the surface by plasma-related process and then rotate back into the material in time. A part of the decay was also explained by the plasma cleaning model, in which the ageing effect occurred through re-contamination. Paper is a multicomponent system, where the constituents that have the lowest surface energy were suggested to migrate to paper surfaces.
2086. Minzari, D., P. Moller, P. Kingshott, L.H. Christensen, and R. Ambat, “Surface oxide formation during corona discharge of AA 1050 aluminum surfaces,” Corrosion Science, 50, 1321-1330, (May 2008).
Atmospheric plasmas have traditionally been used as a non-chemical etching process for polymers, but the characteristics of these plasmas could very well be exploited for metals for purposes more than surface cleaning that is presently employed. This paper focuses on how the corona discharge process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide and hydroxide. The thickness of the oxide layer extends to 150–300 nm after prolonged treatment. Potentiodynamic polarization experiments show that the corona treatment reduces anodic reactivity of the surface significantly and a moderate reduction of the cathodic reactivity.
2215. Madhusoodhanan, S., S. Sung, E. Delp, et al, “Dynamic surface tension of digital UV curable inks,” Ink World, 14, 0, (Mar 2008).
805. Zenkiewicz, M., P. Rytlewski, J. Czuprynska, J. Polanski, T. Karasiewicz, and W. Engelhard, “Contact angle and surface free energy of electron-beam irradiated polymer composites,” Polimery, 53, 446-451, (Jun 2008).
The effects of the electron radiation dose and of compatibilizers on the contact angle and surface free energy (SFE) of the composites made of low-density polyethylene (PE-LD), high-density polyethylene (PE-HD), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were studied. Use of the high-energy electron radiation with doses up to 300kGy and of compatibilizers was done to reach better mechanical and adhesion properties of the composites studied and, at the same time, to investigate the possibility of applying of this technique in the processes of polymeric materials recycling. The compatibilizers were the styrene-ethylene/butylene-styrene elastomer grafted with maleic anhydride (SEBS-g-MA), added at the amounts of 5, 10 or 15 wt.%, and trimethylol propane trimethylacrylate (TMPTA), added at the amounts of 1, 2 or 3 wt.%. The effects, discussed in the present article, are: enhancement of wettability and increase in SFE of the composites studied. It was found that the contact angle steadily decreased and SFE of the composites increased with the rising dose of the electron radiation and that TMPTA intensified these tendencies.
1707. Bishop, C.A., “Coefficient of friction (COF) of plain & metallized films,” http://www.vacuumcoatingblog.com, Jun 2008.
1713. Gilbertson, T.J., “Troubleshoot surface treating for print,” Converting, 26, 42-47, (Jun 2008).
1922. Guild, F.J., M.D. Green, R. Stewart, and V. Goodship, “Air plasma pre-treatment for polypropylene automotive bumpers,” J. Adhesion, 84, 530-542, (Jun 2008).
The effect of forced air-plasma pre-treatment, Lectro-treat (TM), on polypropylene has been investigated using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (AR-XPS), and atomic force microscopy (AFM). The pre-treatment process is found to induce both surface chemistry changes and topographical changes. The parameters of the pre-treatment process can be optimised from these observations. The Lectro-treat pre-treatment process has been used for adhesive bonding of a demonstrator component: a bumper assembly. The adhesively bonded bumpers performed successfully in standard automotive tests.
2674. Argent, D., “Dyne levels part 1,” http://www.pffc-online.com/process-management/6240-dyne-levels-part-1-0608, Jun 2008.
1708. Bishop, C.A., “Question re plasma treatment: Effect of distance of plasma target plates and substrate surface, and possibility of back treatment during plasma treatment,” http://www.vacuumcoatingblog.com, Jul 2008.
2169. Bishop, C.A., “Question re backsurface treatment & starry film,” http://www.vacuumcoatingblog.co.uk/blog/2008/07/questions-re-ba.html, Jul 2008.
2170. Bishop, C.A., “Lifetime of surface treatment,” http://www.vacuumcoatingblog.co.uk/blog/2008/07/lifetime-of-sur, Jul 2008.
2537. Dubreuil, M.F., and E.M. Bongaers, “Use of atmospheric pressure plasma technology for durable hydrophilicity enhancement of polymeric substrates,” Surface and Coatings Technology, 202, 5036-5042, (Jul 2008).
Parallel plates dielectric barrier discharge (DBD) at atmospheric pressure has been investigated to modify and functionalize the surface of different polymer substrates, e.g. polyolefins, poly(ethylene terephtalate), polyamide, in order to enhance their hydrophilic properties. Surface properties have been altered to meet the requirements of specific applications by introducing the appropriate functionalities through the use of either acetic acid or ethyl acetate. The coatings have been characterized through wettability measurements, labeling coupled with X-Ray photoelectron spectroscopy, and IR spectroscopy.
2675. Argent, D., “Dyne levels part 2,” http://www.pffc-online.com/surface-prep/corona-flame-plasma/6338-dyne-..., Jul 2008.
2901. Xiu, Y., L. Zhu, D.W. Hess, and C.P. Wong, “Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces,” J. Physical Chemistry, 112, 11403-11407, (Jul 2008).
Low contact angle hysteresis is an important characteristic of superhydrophobic surfaces for nonstick applications involving the exposure of these surfaces to water or dust particles. In this article, a relationship is derived between the surface work of adhesion and the dynamic contact angle hysteresis, and the resulting predictions are compared with experimental data. Superhydrophobic surfaces with different contact angles and contact angle hysteresis were prepared by generating silicon pillars with varying pillar size and pitch. Surfaces were subsequently treated with fluoroalkyl silanes to modify further the hydrophobicity. The three-phase contact line established for such systems was related to the Laplace pressure needed to maintain a stable superhydrophobic state.
2988. Pascual, M., R. Balart, L. Sanchez, O. Fenollar, and O. Calvo, “Study of the aging process of corona discharge plasma effects on low density polyethylene film surface,” J. Materials Science, 43, 4901-4908, (Jul 2008).
A study of the durability of corona discharge plasma effects on a polymer surface was investigated in this work. We used the corona discharge plasma technique to modify the wettability properties of low density polyethylene (LDPE) film and evaluated the influence of relative humidity and temperature on the aging process with three different storage conditions. The effects of the aging process on the plasma-treated surface of LDPE film were quantified by contact angle measurements, Fourier-transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. The results obtained with these techniques have allowed us to determine how the aging process promotes changes in the plasma-treated surface by decreasing its wettability and taking place a remarkable hydrophobic recovery process.
2557. Quere, D., “Wetting and roughness,” Annual Review of Materials Research, 38, 71-99, (Aug 2008).
We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.
2571. Schubert, G., “Adhesion to foil: More than just a one-sided story,” in 2008 PLACE Conference Proceedings, 1123-1152, TAPPI Press, Sep 2008.
2273. Joshi, R., R.-D. Schulze, A. Meyer-Plath, and J.F. Friedrich, “Selective surface modification of poly(propylene) with OH and COOH groups using liquid-plasma systems,” Plasma Processes and Polymers, 5, 695-707, (Sep 2008).
Underwater plasma and glow discharge electrolysis are interesting new methods for polymer surface functionalization. The achievable content of O-containing functional groups exceeds that of oxygen glow discharge gas plasmas by a factor of two (up to ca. 56 O/100 C). The percentage of OH groups among all O-containing groups can reach 25 to 40%, whereas it is about 10% in the gas plasmas. Addition of hydrogen peroxide increases the fraction of OH groups to at most 70% (27 OH/100 C). The liquid plasma systems are also able to polymerize acrylic acid and deposit the polymer as very thin film on substrate surfaces or membranes, thereby retaining about 80% of all COOH functional groups (27 COOH/100 C).
2566. Cushing, G., “Balancing adhesion and slip properties in aqueous heat seal coatings,” in 2008 PLACE Conference Proceedings, 53-60, TAPPI Press, Sep 2008.
2567. Mandolini, P., “Polarized flame treatment for BOPP and CPP films and comparison with other treatment methods,” in 2008 PLACE Conference Proceedings, 710-714, TAPPI Press, Sep 2008.
2568. Lahti, J., M. Tuominen, and J. Kuusipalo, “The influence of atmospheric plasma treatment on digital print quality of extrusion coated paper,” in 2008 PLACE Conference Proceedings, 767-778, TAPPI Press, Sep 2008.
2569. Bodine, J., “Over-treatment of PET - fact or fiction (part 1): A study of the following variables: watt density, corona dwell time, film selection, dyne level and water soak bond strength,” in 2008 PLACE Conference Proceedings, 794-801, TAPPI Press, Sep 2008.
2570. Wolf, R.A., “Advances in adhesion with CO2-based atmospheric pressure plasma surface modification,” in 2008 PLACE Conference Proceedings, 834-838, TAPPI Press, Sep 2008.
1720. Bodine, J., “Overtreatment of PET: Fact or fiction,” in AIMCAL 2008 Fall Technical Conference, AIMCAL, Oct 2008.
1740. Varella, R., “Business strategies: Surface treatments,” Plastics Decorating, 30-32, (Oct 2008).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->