Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 33 of 76, ordered by
 

896. Tomasino, C., J.J. Cuomo, and C.B. Smith, “Plasma treatments of textiles,” in The Fifth Annual International Conference on Textile Coating and Laminating, W.C. Smith, ed., Technomic, Nov 1995.

2395. Kusano, Y., T. Inagaki, M. Yoshikawa, S. Akiyama, and K. Naitoh, “Corona discharge surface treating method,” U.S. Patent 5466424, Nov 1995.

1945. Brewis, D.M., and G.W. Critchlow, “Adhesion and surface analysis,” J. Adhesion, 54, 175-199, (Dec 1995).

1946. Fritz, J.L., and M.J. Owen, “Hydrophobic recovery of plasma-treated polydimethylsiloxane,” J. Adhesion, 54, 33-45, (Dec 1995).

181. Kaczmarek, H., “Changes to polymer morphology caused by UV irradiation, I. Surface damage,” Polymer, 37, 189-194, (1996).

574. Sherman, P.B., “The benefits of ozone in extrusion coating,” in 1996 Polymers, Laminations and Coatings Conference Proceedings, TAPPI Press, 1996.

955. Markgraf, D.A., “Corona treater station design & construction: Meeting the blown film challenge,” in 1996 Polymers, Laminations and Coatings Conference Proceedings, TAPPI Press, 1996.

975. Matousek, P., G. Kreuger, and O.-D. Hennemann, “Adhesion tests with corona-pretreated plastics,” Gummi Fasern Kunststoffe, 49, 630-631, (1996).

987. Good, R.J., S. Li Kuang, C. Hung-Chang, and C.K. Yeung, “Hydrogen bonding and the interfacial component of adhesion: Acid/base interactions of corona treated polypropylene,” J. Adhesion, 59, 25-37, (1996).

990. Mathieson, I., and R.H. Bradley, “Improved adhesion to polymers by UV/ozone surface oxidation,” Intl. J. Adhesion and Adhesives, 16, 29-31, (1996).

1021. Nihlstrand, A., T. Hjertberg, H.P. Schreiber, and J.E. Klemberg-Sapieha, “Plasma treatment and adhesion properties of a rubber-modified polypropylene,” J. Adhesion Science & Technology, 10, 651-675, (1996).

1228. Lee, L.-H., “Correlation between Lewis acid-base surface interaction components and linear solvation energy relationship solvatochromic alpha and beta parameters,” Langmuir, 12, 1681-1687, (1996).

1310. Sedev, R.V., J.G. Petrov, and A.W. Neumann, “Effect of swelling of a polymer surface on advancing and receding contact angles,” J. Colloid and Interface Science, 180, 36-42, (1996).

1311. Kwok, D.Y., and A.W. Neumann, “A simple experimental test of the Lifshitz-van der Waals/acid-bsae approach to determine interfacial tensions,” Canadian J. Chemical Engineering, 74, 551-553, (1996).

1330. Grundke, K., T. Bogumil, T. Gietzelt, H.-J. Jacobasch, D.Y. Kwok, A.W. Neumann, “Wetting measurements on smooth, rough and porous solid surfaces,” Progress in Colloid and Polymer Science, 101, 58-68, (1996).

1442. Badey, J.P., E. Espuche, D. Sage, B. Chabert, Y. Jugnet, C. Batier, T.M. Duc, “Comparative study of the effects of ammonia and hydrogen plasma downstream surface treatment on the surface modification of polytetrafluoroethylene,” Polymer, 37, 1377-1386, (1996).

1714. Markgraf, D.A., Surface Treatment of Plastics: Technology and Applications, Technomic, 1996.

1742. Coates, D.M., and S.L. Kaplan, “Modification of polymeric surfaces with plasma,” MRS Bulletin, 21, 43-45, (1996).

1805. Iyengar, D.R., S.M. Perutz, C.-A. Dai, C.K. Ober, and E.J. Kramer, “Surface segregation studies of fluorine-containing diblock copolymers,” Macromolecules, 29, 1229-1234, (1996).

1871. Flitsch, R., and D.-Y. Shih, “An XPS study of argon ion beam and oxygen RIE modified BPDA-PDA polyimide as related to adhesion,” J. Adhesion Science and Technology, 10, 1241-1253, (1996).

1872. Leonard, D., P. Bertrand, A. Scheuer, et al, “Time-of-flight SIMS and in-situ XPS study of O2 and O2-N2 post-discharge microwave plasma-modified high-density polyethylene and hexatriacontane surfaces,” J. Adhesion Science and Technology, 10, 1165-1197, (1996).

1873. Chen, H.H., and M.D. Ries, “Surface energy modification and characterization of a plasma-polymerized fluoropolymer,” J. Adhesion Science and Technology, 10, 495-513, (1996).

1874. Niem, P.I.F., T.L. Lau, and K.M. Kwan, “The effect of surface characteristics of polymeric materials on the strength of bonded joints,” J. Adhesion Science and Technology, 10, 361-372, (1996).

2763. Markgraf, D.A., “Corona treatment: An adhesion promoter for water-based & UV-cured printing,” in 1996 New Printing Technologies Symposium Proceedings, TAPPI Press, 1996.

2937. no author cited, “Standard T565: Contact angle of water droplets on corona-treated polymer film surfaces,” TAPPI, 1996.

410. no author cited, “Ceramic rollers boost corona-treating uptime,” Plastics Technology, 42, 92, (Feb 1996).

447. Dan, N., “The effect of polymer additives on the spreading of partially wetting films,” Langmuir, 40, 1101-1104, (Feb 1996).

927. Salmaggi, H.L, “Flexo finds the answer: How does the treater roll get affected by dirt, dust, or ink, and how should it be cleaned?,” Flexo, 21, 96, (Feb 1996).

985. Herranz, M., “Coextrusion and printing problems,” Plast' 21, 49, 43-45, (Feb 1996).

169. Inagaki, N., Plasma Surface Modification and Plasma Polymerization, Technomic, Mar 1996.

145. Gorzynski, M.R., “Goniometer provides accurate measurement of bottle coatings,” Packaging Technology & Engineering, 5, 48-51, (Apr 1996).

1944. Feinerman, A.E., Y.S. Lipatov, and V.I. Minkov, “On the hysteresis of polymer wetting,” J. Adhesion, 56, 97-105, (Apr 1996).

2898. Drelich, J., J.D. Miller, and R.J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,” J. Colloid and Interface Science, 179, 37-50, (Apr 1996).

350. Stobbe, B.D., “Corona treatment 101: Understanding the basics from a narrow web perspective,” Label & Narrow Web Industry, 1, 33-36, (May 1996).

806. Shi, M.K., A. Selmani, L. Martinu, E. Sacher, M.R. Wertheimer, and A. Yelon, “Fluoropolymer surface modification for enhanced evaporating,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 73-86, VSP, May 1996.

808. Ringenbach, A., Y. Jugnet, and T.M. Duc, “Interfacial chemistry in Al and Cu metallization of untreated and plasma treated polyethylene and polyethylene terephthalate,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 101-120, VSP, May 1996.

811. Zhang, J.-Y., H. Esrom, U. Kogelschatz, and G. Emig, “Modifications of polymers with UV excimer radiation from lasers,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 153-184, VSP, May 1996.

812. Murahara, M., and K. Toyoda, “Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 213-222, VSP, May 1996.

818. Lunkwitz, K., W. Burger, U. Lappan, H.-J. Brink, and A. Ferse, “Surface modification of fluoropolymers,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 349-362, VSP, May 1996.

819. Lee, K.-W., “Modification of polyimide morphology: relationship between modification depth and adhesion strength,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 363-378, VSP, May 1996.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->