Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 69 of 76, ordered by
 

2183. Wolf, R.A., and A.C. Sparavigna, “The plasma advantage,” Textile World, 155, 49-51, (2005).

2184. Wolf, R.A., and A.C. Sparavigna, “Atmospheric plasma for textiles,” R. Technologie Tessili, 46-50, (May 2006).

A recent study has illustrated a sizeable increase in the printing characteristics of nonwovens following atmospheric plasma treatments. The improvement of properties such as wettability, printability and adhesion opens up new application prospects for treated fabrics.

2749. Wolf, R.A., and A.C. Sparavigna, “Modifying surface features: Extrusion coating and laminating,” in 2007 PLACE Conference Proceedings, 881-884, TAPPI Press, Sep 2007.

2963. Wolf, R.A., and A.C. Sparavigna, “Role of plasma surface treatments on wetting and adhesion,” Engineering, 2, 397-402, (2010).

There are many current and emerging wetting and adhesion issues which require an additional surface processing to enhance interfacial surface properties. Materials which are non-polar, such as polymers, have low surface energy and therefore typically require surface treatment to promote wetting of inks and coating. One way of increasing surface energy and reactivity is to bombard a polymer surface with atmospheric plasma. When the ionized gas is discharged on the polymer, effects of ablation, crosslinking and activation are produced on its surface. In this paper we will analyse the role of plasma and its use in increasing the surface energy to achieve wettability and improve adhesion of polymeric surfaces.

1054. Wolf, R.A., and R.E. Ellwanger, “Inline functional coatings of surfaces via plasma CVD at atmospheric pressure,” in 2003 PLACE Conference and the Global Hot Melt Symposium, TAPPI Press, Sep 2003.

2746. Wolf, R.A., and R.E. Elwanger, “Clear barrier at atmospheric pressure,” in 2006 PLACE Conference Proceedings, 487-489, TAPPI Press, Sep 2006.

2235. Wolford, E.J., “Roundtable on surface treatment,” Flexible Packaging, 13, 30, (Apr 2011).

2433. Wolford, E.J., “Roundtable on surface treatment,” Flexible Packaging, 14, 34-35, (Apr 2012).

691. Wolinski, L.E., “Surface treatment of polymeric shaped structures,” U.S. Patent 3274089, Sep 1966.

2165. Wolkenhauer, A., G. Avramidis, E. Hausweld, H. Militz, and W. Viol, “Plasma treatment of wood-plastic composites to enhance their adhesion properties,” J. Adhesion Science and Technology, 22, 2025-2037, (2008).

In this study, the adhesion properties of adhesives and paints on wood–plastic composites (WPCs) after plasma treatment at atmospheric pressure and ambient air were investigated. Surface energy determination by means of contact angle measurements according to the Owens–Wendt approach and atomic force microscopy to detect changes in surface topography were carried out. An increase in the polar component of surface energy and an increase in surface roughness after plasma treatment were detected, indicating enhanced bond strength. To confirm these results, bond strength tests were conducted. By tensile bond strength tests, increased adhesion of waterborne, solventborne and oil-based paints on plasma treated surfaces was found. Furthermore, by shear bond strength tests, an increase in bond strength of plasma treated WPCs bonded with poly(vinyl acetate) and polyurethane adhesives was ascertained.

2318. Wood, H.H., “Method of improving the adhesive properties of polyolefin film by passing a diffuse electrical discharge over the film's surface,” U.S. Patent 3376208, Apr 1968.

1950. Woods, D.W., P.J. Hine, R.A. Duckett, and I.M. Ward, “Effect of high modulus polyethylene fibre surface treatment on epoxy resin composite impact properties,” J. Adhesion, 45, 173-189, (Sep 1994).

2054. Woods, S.S., and A.V. Pocius, “The influence of polymer processing additives (PPAS) on the surface and optical properties of polyolefin plastomer blown film,” J. Plastic Film and Sheeting, 17, 62-87, (Jan 2001).

389. Wool, R.P., Polymer Interfaces: Structure and Strength, Hanser Gardner, Sep 1994.

901. Wool, R.P., “Diffusion and autohesion,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 351-402(V2), Elsevier, Oct 2002.

1638. Wright, L.L., R.G. Posey, and E. Culbertson, “AFM studies of corona treated uniaxially drawn PET films,” in 49th Annual Technical Conference Proceedings, 673-678, Society of Vacuum Coaters, 2006.

1761. Wu, D., W. Ming, R.A.T.M. van Benthem, and G. de With, “Superhydrophobic fluorinated polyurethane films,” J. Adhesion Science and Technology, 22, 1869-1881, (2008).

A superhydrophobic polyurethane-based film is described, on which the water advancing and receding contact angles are 150° and 82°, respectively. The film was prepared from surface-fluorinated polyurethane (PU), obtained from a well-defined fluorinated isocyanate, with silica particles incorporated within the film. In the absence of the silica particles, smooth fluorinated PU films with about 2 wt% fluorine demonstrate water advancing and receding contact angles of 110° and 63°, respectively. A major cause for the large contact angle hysteresis, similar to the so-called 'sticky' superhydrophobic behavior, on the roughened PU films is believed to originate from the surface reorganization of the fluorinated PU upon contact with water, which is characteristic for the partially fluorinated PU film. When a similar poly(dimethylsiloxane) (PDMS)-based roughened film was made, the water contact angle hysteresis could be reduced significantly, since the long PDMS chain can effectively suppress the surface reorganization upon contact with water.

1077. Wu, D.Y., W.S. Gutowski, S. Li, and H.J. Griesser, “Ammonia plasma treatment of polyolefins for adhesive bonding with a cyanoacrylate adhesive,” J. Adhesion Science and Technology, 9, 501-525, (1995).

390. Wu, S., “Estimation of the critical surface tension for polymers from molecular constitution by a modified Hildebrand-Scott equation (notes),” J. Physical Chemistry, 72, 3332-3334, (1968).

391. Wu, S., “Surface and interfacial tensions of polymer melts, II. Poly(methylmethacrylate), poly(n-butyl methacrylate), and polystyrene,” J. Physical Chemistry, 74, 632-638, (1970).

392. Wu, S., “Calculation of interfacial tension in polymer systems,” J. Polymer Science, 34, Part C, 19-30, (1971).

393. Wu, S., “Interfacial and surface tensions of polymers,” J. Macromolecular Science, C10, 1-73, (1974).

600. Wu, S., “Polar and nonpolar interactions in adhesion,” J. Adhesion, 5, 39-55, (1973).

601. Wu, S., “Surface tension of solids: an equation of state analysis,” J. Colloid and Interface Science, 71, 605-609, (1979).

657. Wu, S., “Interfacial energy, structure and adhesion between polymers,” in Polymer Blends, Vol. 1, Paul, D.R., and S. Newman, eds., Academic Press, 1978.

658. Wu, S., Polymer Interface and Adhesion, Marcel Dekker, 1982.

915. Wu, S., “Notes - Surface tension of solids: an equation of state analysis,” J. Colloid and Interface Science, 71, (Oct 1979).

1772. Wu, S., “Surface and interfacial tensions of polymer melts I: Polyethylene, polyisobutylene, and polyvinyl acetate,” J. Colloid and Interface Science, 31, 153-161, (Oct 1969).

1774. Wu, S., “Surface and interfacial tensions of polymers, oligomers, plasticizers and organic pigments,” in Polymer Handbook, 3rd Ed., Brandrup, J., and E.H. Immergut, eds., VI: 414-426, Wiley-Interscience, 1989 (also in Polymer Handbook, 4th Ed., J. Brandrup, E.H. Immergut, and E.A. Grulke, eds., p. VI: 521-535, John Wiley & Sons, Jul 2003).

2300. Wu, S., “Surface tension of solids: Generalization and reinterpretation of critical surface tension,” in Adhesion and Adsorption of Polymers, Part A, Lee, L.-H., ed., 53-65, Plenum Press, 1980.

2329. Wu, S., “Polar and nonpolar interactions in adhesion,” in Recent Advances in Adhesion, Lee, L.-H., ed., 45-63, Gordon and Breach, 1973.

2009. Wu, S., and K.J. Brzozowski, “Surface free energy and polarity of organic pigments,” J. Colloid and Interface Science, 37, 686-690, (Dec 1971).

707. Wu., D.Y., W.S. Gutowski, and S. Li, “Surface engineering of polymers for enhanced adhesion,” Presented at First International Congress on Adhesion Science and Technology, Oct 1995.

1326. Wulf, M., K. Grundke, D.Y. Kwok, and A.W. Neumann, “Influence of different alkyl side chains on solid surface tension of polymethacrylates,” J. Applied Polymer Science, 77, 2493-2504, (2000).

1318. Wulf, M., S. Michel, K. Grundke, O.I. del Rio, D.Y. Kwok, and A.W. Neumann, “Simultaneous determination of surface tension and density of polymer melts using axisymmetric drop shape analysis,” J. Colloid and Interface Science, 210, 172-181, (1999).

1387. Xia, Z., R. Gerhard-Multhaupt, W. Kunstler, A. Wedel, and R. Danz, “High surface-charge stability of porous polytetrafluoroethylene electret films at room and elevated temperatures,” J. Physics D: Applied Physics, 32, 83-85, (1999).

983. Xiao, G.Z., “Effects of solvents on the surface properties of oxygen plasma-treated polyethylene and polypropylene films,” J. Adhesion Science and Technology, 11, 655-663, (1997).

1914. Xie, X., T.R. Gengenbach, and H.J. Griesser, “Changes in wettability with time of plasma-modified perfluorinated polymers,” J. Adhesion Science and Technology, 6, 1411-1431, (1992) (also in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, K.L. Mittal, ed., p. 509-529, VSP, Nov 1993).

2727. Xiong, L., P. Chen, and Q. Zhou, “Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment,” J. Adhesion Science and Technology, 28, 1046-1054, (2014).

Polydimethylsiloxane (PDMS) and glass are among the most widely used materials in biomedical and microfluidic applications. In this paper, oxygen plasma exposure was used to improve the adhesion properties of PDMS and glass. The effect of bonding quality parameters such as RF power, time of activation and oxygen flow was investigated. Bonding area and strength, two main indicators of bonding quality, were detected using manual peel and mechanical shear tests, respectively, to optimize the bonding parameters. It was observed that increase in activation time and RF power increased the bonding strength considerably. The oxygen flow had a slight influence in increasing the bonding strength. The application of this bond has also been demonstrated in PDMS–glass micropump, so this technique can be potentially applied for fabrication of PDMS–glass-based microfluidic and biomedical devices.

2901. Xiu, Y., L. Zhu, D.W. Hess, and C.P. Wong, “Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces,” J. Physical Chemistry, 112, 11403-11407, (Jul 2008).

Low contact angle hysteresis is an important characteristic of superhydrophobic surfaces for nonstick applications involving the exposure of these surfaces to water or dust particles. In this article, a relationship is derived between the surface work of adhesion and the dynamic contact angle hysteresis, and the resulting predictions are compared with experimental data. Superhydrophobic surfaces with different contact angles and contact angle hysteresis were prepared by generating silicon pillars with varying pillar size and pitch. Surfaces were subsequently treated with fluoroalkyl silanes to modify further the hydrophobicity. The three-phase contact line established for such systems was related to the Laplace pressure needed to maintain a stable superhydrophobic state.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->