ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 66 of 76, ordered by
592. Waddington, S., and D. Briggs, “Adhesion mechanisms between polymer coatings and polypropylene studied by X-ray photoelectron spectroscopy and secondary ion mass spectrometry,” Polymer Communications, 32, 506-508, (1991).
1438. Wade, G.A., W.J. Cantwell, and R.C. Pond, “Plasma surface modification of glass fibre-reinforced nylon-6,6 thermoplastic composites for improved adhesive bonding,” Interface Science, 8, 363-373, (Oct 2000).
2398. Wadsworth, L.C., and P.P. Tsai, “Method and apparatus for the electrostatic charging of web or film,” U.S. Patent 5686050, Nov 1997.
375. Wagner, H.D., “Spreading of liquid droplets on cylindrical surfaces: accurate determination of contact angle,” J. Applied Physics, 67, 1352-1355, (1990).
1386. Wagner, H.E., R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, J.F. Behnke, “The barrier discharge: Basic properties and applications to surface treatment,” Vacuum, 3, 417-436, (May 2003).
776. Wallace, E. Jr., B.B. Sauer, and G.S. Blackman, “Surface analysis of polyester film modified by flame and corona surface treatments,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, Mittal, K.L., and K.-W. Lee, eds., 91-100, VSP, Jun 1997.
593. Wallace, E. Jr., et al, “Contact angle titration and ESCA analysis of polyester surfaces modified by flame and corona treatment,” in ANTEC 95, Society of Plastics Engineers, 1995.
1056. Walsh, P.J., and A.J. Lessner, “Measuring small contact angles of sessile drops on low energy substrates by refraction,” in PMSE Reprints, American Chemical Society, Mar 2004.
1045. Walzak, M.J., J.M. Hill, C. Huctwith, M.L Wagter, and D.H. Hunter, “AFM and FTIR-ATR in study of UV/ozone modified surfaces of polyethyleneterephthalate and polypropylene,” in 20th Annual Anniversary Meeting, 505-508, Adhesion Society, 1997.
1897. Walzak, M.J., S. Flynn, R. Foerch, et al, “UV and ozone treatment of polypropylene and poly(ethylene terephthalate),” J. Adhesion Science and Technology, 9, 1229-1248, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 253-272, VSP, May 1996).
594. Walzak, M.J., et al, “Characterization of PP and PET surfaces after exposure to UV light and/or ozone,” in ANTEC 95, Society of Plastics Engineers, 1995.
1644. Wang, C., “Polypropylene surface modification model in atmospheric pressure dielectric barrier discharge,” Surface and Coatings Technology, 201, 3377-3384, (Dec 2006).
o optimize the effects of some discharge parameters on the surface wettability of polypropylene (PP) in atmospheric pressure dielectric barrier discharge, a surface modification model is created based on statistical theory and orthogonal experimental design method. Contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) are used to study the changes in the surface wettability, surface topology and chemical compositions of the samples. The results show that surface wettability has been improved due to roughness increasing and the introduction of oxygen-containing functional groups. High-resolution XPS of C1s peak deconvolution indicates that the types and contents of oxidized functional groups are different in different discharge conditions or plasma energy. Moreover, the model analysis reveals that it has better predictive ability, and different discharge parameters has selective influence on water contact angle and surface O atom percentage.
2563. Wang, C., J.-R. Chen, and R. Li, “Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma,” Applied Surface Science, 254, 2882-2888, (Feb 2008).
Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108–58° and 65.2°, respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction.
1677. Wang, C., X. Lv, Y. Liu, L. Ge, Y. Ren, and Y. Qiu, “Influence of temperature and relative humidity on aging of atmospheric plasma jet treatment effect on ultrahigh-modulus polyethylene fibers,” J. Adhesion Science and Technology, 21, 1513-1527, (2007).
The aging effects of atmospheric pressure plasma treated fiber surfaces are important for storage and processing of the fibers. One of the high-performance fibers, ultrahigh modulus polyethylene (UHMPE) fiber, was chosen as a model system to investigate the aging process of atmospheric pressure plasma jet (APPJ) treated fibers surfaces 0, 7, 15 and 30 days after initial plasma treatment. The fiber was first plasma-treated and then stored at temperatures varying from −80 to 80°C on the same relative humidity (RH, 0%) and on RH of 0%, 65% and 100% at the same temperature of 20°C. Immediately after the plasma treatment, scanning electron microscope (SEM) showed the roughened fiber surface. X-ray photoelectron spectroscopy analysis showed changed surface chemical compositions. Contact-angle measurement showed increased surface wettability and microbond test showed an increase in IFSS. With increasing relative humidity or decreasing temperature, the IFSS value decreased and the contact angle increased more slowly. However, after 30 days, the IFSS values and contact angles reached a similar level for all groups. Moisture showed no effect on the single fiber tensile strengths during aging. The reasons for the observed aging behavior could be that decreasing temperature or increasing relative humidity hindered the surface rearrangement of polymer chains after plasma treatment.
1645. Wang, K., W. Wang, D. Yang, Y. Huo, and D. Wang, “Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma,” Applied Surface Science, 256, 6859-6864, (Sep 2010).
In this paper, a dielectric barrier discharge operating in nitrogen at atmospheric pressure has been used to improve the surface hydrophilic property of polypropylene (PP) non-woven fabric. The changes in the hydrophilic property of the modified PP samples are investigated by the contact angle measurements and the variation of water contact angle is obtained as a function of the energy density; micrographs of the PP before and after plasma treatment are observed by scanning electron microscopy (SEM) and the chemical composition of the PP surface before and after plasma treatment is also analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the surface hydrophilic property of the PP samples is greatly improved with plasma treatment for a few seconds, as evidenced by the fact that the contact angle of the treated PP samples significantly decreases after plasma treatment. The analysis of SEM shows that the surface roughness of the treated PP samples increases due to bonding and etching in plasma processing. The analyses of FTIR and the C1s peak in the high-resolution XPS indicate that oxygen-containing and nitrogen-containing polar functional groups are introduced into PP surface in plasma processing. It can be concluded that the surface hydrophilic property of the modified PP samples has been obviously improved due to the introduction of oxygen-containing and nitrogen-containing polar groups and the increase of the surface roughness on the PP surface.
376. Wang, L.-H., and R.S. Porter, “The surface orientation of polystyrene measured by liquid contact angle,” J. Applied Polymer Science, 28, 1439-1445, (1983).
2093. Wang, M.-J., Y.-I. Chang, and F. Poncin-Epaillard, “Effects of the addition of hydrogen in the nitrogen cold plasma: The surface modification of polystyrene,” Langmuir, 19, 8325-8330, (2003).
2534. Wang, M.-J., Y.-I. Chang, and F. Poncin-Epaillard, “Acid and base functionalities of nitrogen and carbon dioxide plasma-treated polystyrene,” Surface and Interface Analysis, 37, 348-355, (Mar 2005).
The choice of plasma gas can determine the interaction between material and plasma and therefore the applications of the treated materials. Nitrogen plasma can integrate functional groups such as primary amines and carbon dioxide plasma can incorporate carboxylic groups on the surface of polymers. For specific adhesion such as bio-adhesion, polar groups must be attached to the surface to enhance bio-film formation but the acidic or basic character also controls the adhesion mechanism.
Nitrogen and carbon dioxide plasmas are chosen to treat the surface of polystyrene and to show the effects of different functionalizations, i.e. attachment of acid or basic groups and degradation are compared in the present work.
Nitrogen-containing plasma induces mainly weak degradation at a rate of ∼0.13 µg cm−2s−1. The roughness of the treated surface remains mostly unchanged. Functionalization leads to amino group attachment at a concentration of 1.2 sites nm−2. We found that carbon dioxide plasma treatment shows more drastic degradation with a rate three times higher than that of nitrogen plasma and can create more functional groups (4.5 sites nm−2) at mild plasma treatment. However, the roughness of the surface is altered. In both cases the aromatic groups are degraded through the plasma treatment (again this is more evident with the CO2 plasma) and the induced functionalization was shown to be quick (the upper monolayer of polystyrene film can be functionalized rapidly). Copyright © 2005 John Wiley & Sons, Ltd.
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/sia.2029
2704. Wang, X.-S., S.-W. Cui, L. Zhou, S.-H. Xu, Z.-W. Sun, and R.-Z. Zhu, “A generalized Young's equation for contact angles of droplets on homogeneous and rough substrates,” J. Adhesion Science and Technology, 28, 161-170, (2014).
Using Gibbs’ method of dividing surfaces, the contact angle of a drop on a flat homogeneous rough non-deformable solid substrate is investigated. For this system, a new generalized Young’s equation for the contact angle, including the influences of line tension and which valid for any dividing surface between liquid phase and vapor phase is derived. Under some assumptions, this generalized Young’s equation reduces to the Wenzel’s equation or Rosanov’s equation valid for the surface of tension.
848. Wang, Y., and S. Rak, “Surface modification of polyphenylene sulfide plastics to improve their adhesion to a dielectric adhesive,” in Adhesion Aspects of Polymeric Coatings, Vol. 2, Mittal, K.L., ed., 121-136, VSP, Jun 2003.
767. Wantke, K.D., and H. Fruhner, “The oscillating bubbles method,” in Drops and Bubbles in Interfacial Research, Mobius, D., and R. Miller, eds., 327-366, Elsevier, Jun 1998.
2936. Wapner, P.G., and W.P. Hoffman, “Liquid to solid angle of contact measurement,” U.S. Patent 6867854, Mar 2005.
377. Ward, T.L., and R.R. Benerito, “Testing based on wettability to differentiate washed and unwashed cotton fibers,” Textile Research J., 55, 40-45, (Jan 1985).
1492. Washburn, E.W., “The dynamics of capillary flow,” Physical Review, 17, 273-283, (1921).
378. Washburn, J.D., “Round Robin Data for D2578-67 (Research Report File No. D-20-1009),” ASTM, Nov 1970.
2201. Washebeck, D., “Useful information: Plasma and surface treatment,” http://www.pillartech.eu/Treaters/tru1.htm,
2417. Washebeck, R.J., and R.A. Kleinschmidt, “Narrow web corona treater,” U.S. Patent 6894279, May 2005.
379. Waterhouse, J.F., “Mechanical and physical properties of paper surfaces,” in Surface Analysis of Paper, Conners, T.E., and S. Banerjee, eds., 72-89, CRC Press, Jul 1995.
595. Watson, W.M., “Adhesion to polyethylene with water-based inks,” American Ink Maker, 62, 38-106, (Oct 1984).
380. Weber, J.H., “Predict surface tension of binary liquids,” Chemical Engineering, 92, 87-90, (Oct 1985).
2742. Weber, R., “Saturation phenomena in conjunction with corona treatment on different substrates,” in 2005 PLACE Conference Proceedings, 1213-1216, TAPPI Press, Sep 2005.
2757. Weber, R., “Saturation phenomena in conjunction with corona treatment on different substrates,” in 2005 European PLACE Conference Proceedings, TAPPI Press, 2005.
2208. Weber. R., “Corona experiences on paper and cardboard,” in 11th European PLACE Conference Proceedings, TAPPI Press, May 2007.
1912. Webster, H.F., and J.P. Wightman, “Effects of oxygen and ammonia plasma treatment on polypropylene sulfide thin films and their interaction with epoxy adhesive,” J. Adhesion Science and Technology, 5, 93-106, (1991) (also in Acid-Base Interactions: Relevance to Adhesion Science and Technology, K.L. Mittal and H.R. Anderson Jr., eds., p. 329-342, VSP, Nov 1991).
381. Weinberg, M.L., “High energy,” Package Printing, 44, 38-43, (May 1997).
2339. Weininger, J.L., “Reaction of active nitrogen with polyethylene,” Nature, 186, 546-547, (1960).
1928. Weiss, C., and H. Muenstedt, “Surface modification of polyether ether ketone (PEEK) films for flexible printed circuit boards,” J. Adhesion, 78, 443-445, (May 2002).
2667. Weiss, D.A., “Effective ink transfer,” Flexo, 41, 68-72, (Oct 2016).
382. Weiss, H., “Surface energy can inhibit ink transfer on ceramic rolls,” Paper Film & Foil Converter, 68, 62, (Jan 1994).
383. Weiss, H., “Surface tension flexo condition being studied,” Paper Film & Foil Converter, 68, 10, (Apr 1994).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->