ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 65 of 76, ordered by
737. Uehara, T., “Corona discharge treatment of polymers,” in Adhesion Promotion Techniques: Technological Applications, Mittal, K.L., and A. Pizzi, eds., 191-204, Marcel Dekker, Feb 1999.
2098. Ulbricht, M., and G. Belfort, “Surface modification of ultrafiltration membranes by low temperature plasma I: Treatment of polyacrylonitrile,” J. Applied Polymer Science, 56, 325-343, (Apr 1995).
687. Ulren, L., and T. Hjertberg, “Adhesion between aluminum and copolymers of ethylene and vinyltrimethoxysilane,” J. Applied Polymer Science, 37, 1269-1285, (1989).
2426. Urbaniak-Domagala, W., “Pretreatment of polypropylene films for following technological processes, II: The use of low temperature plasma method,” J. Applied Polymer Science, 122, 2529-2541, (2011).
The surface of polypropylene (PP) films was activated by RF plasma method with the use different gases: argon, air, water vapor, and acetic acid vapor. Plasma was diagnosed based on spectra emitted by gas plasma using the method of optical emission spectroscopy. The effectiveness of these processing gases during plasma treatment was analyzed. The effects of PP activation were assessed with the use of IR-ATR absorption spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and the analysis of the surface free energy components based on liquid contact angle. The activation of PP surface by plasma treatment resulted in the increased energy of PP surface layer to the extent being dependent on the type of processing gases and in the formation of new chemical groups on it. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.34486
369. Utschig, S., “Why is corona treating necessary in the flexo process?,” Converting, 20, 28, (Aug 2002).
2456. Utschig, S., “Measuring surface energy on non-porous substrates,” https://www.enerconind.com/web-treating/support/application-support/measuring-surface-energy-on-non-porous-substrates.aspx, 2012.
2483. Utschig, S., “Measuring treatment of non-porous materials,” Enercon Industries, Dec 2006.
742. Uyama, Y., E. Uchida, and Y. Ikada, “Adhesive interactions between polymer surfaces in water,” in Interfacial Forces and Fields: Theory and Applications, Hsu, J.-P., ed., 329-384, Marcel Dekker, Jun 1999.
370. Uyama, Y., H. Inoue, K. Ito, A. Kishida, and Y. Ikada, “Comparison of different methods for contact angle measurement,” J. Colloid and Interface Science, 141, 275-279, (1991).
636. Vaha-Nassi, M., T. Hirvikorpi, J. Sievanen, E. Salo, and A. Harlin, “Effect of pre-treatments on the barrier properties of layers applied by atomic layer deposition onto polymer-coated substrates,” Presented at 13th TAPPI European PLACE Conference, 2011.
1004. Vaha-Nissi, M., T. Kimpimaki, J. Kuusipalo, and A. Savolainen, “Adhesion in extrusion coating of dispersion coated paper/paperboard,” in 1997 Polymers, Laminations and Coatings Conference Proceedings, 559-566(V2), TAPPI Press, Aug 1997.
2983. Van Deynse, A., P. Cools, C. Leys, R. Morent, and N. De Geyter, “Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces,” Surface and Coatings Technology, 258, 359-367, (Nov 2014).
Plasma treatment is often used to modify the surface properties of polymer films, since it offers numerous advantages over the conventional surface modification techniques. However, plasma-treated polymer films have a tendency to revert back to the untreated state (aging process). Therefore, the stability of plasma-induced changes on polymer surfaces over a desired period of time is a very important issue. The objective of this study is to examine the effect of storage conditions (relative humidity and temperature) on the aging behavior in air of plasma-treated low density polyethylene (LDPE) films. Plasma treatment is performed using a dielectric barrier discharge (DBD) operating in different argon/water vapor mixtures at medium pressure (5.0 kPa). Results show that the aging process can be suppressed by storing the plasma-modified LDPE films at low temperature and by decreasing the relative humidity of the surrounding air. Adding water vapor in the plasma discharge has a positive influence on the aging process: lower plateau WCA values are found for plasmas containing a higher water vapor concentration and it takes a longer time to reach these plateau values. In this paper, it is also shown that storage first at a lower temperature and then aging at a higher temperature is not able to slow down the aging effect.
1666. Van Iseghem, L.C., “Coating plastics - some important concepts from a formulator's perspective,” http://www.vtcoatings.com/plastics.htm, 0.
2903. Van Oss, C.J., L. Ju, M.K. Chaudhury, and R.J. Good, “Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels,” J. Colloid and Interface Science, 128, 313-319, (Mar 1989).
585. Van der Linden, R., “An evaluation of the phenomena and their final effects resulting from a corona discharge on low density polyethylene,” in Adhesion and Absorption of Polymers, Part B, Lee, L.-H., ed., Plenum Press, 1980.
1430. Vandencasteele, N., H. Fairbrother, and F. Reniers, “Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: An OES-AFM-contact angle and XPS study,” Plasma Processes and Polymers, 2, 493-500, (Jul 2005).
Polytetrafluoroethylene (PTFE) surfaces were treated by oxygen and nitrogen species generated either in a remote (filtered) RF plasma or in an ion gun. In the first case, the majority of the species reaching the surface are neutral molecules, whereas in the second case, ions are the reactive agent. In this paper, we show that ions alone do not lead to a significant grafting of new functions on the PTFE surface. The XPS analysis of the treated surface show identical behaviour with oxygen and nitrogen ion treatment, and the evolution of the C1s peak shape suggest a progressive sputtering, leading to defluorination of the surface. The nitrogen plasma treatment lead to a subsequent grafting that is attributed mostly to the “excited neutrals”, but we suggest here that the ions could play a significant role in the activation process of the surface. The exposure of PTFE to an oxygen plasma lead to chemical etching of the surface, different from the physical sputtering induced by the ion treatment, that lead to a super-hydrophobic behavior of the surface attributed to an increase in the surface roughness.
2209. Vangeneugden, D., “Cold atmospheric plasma technology for surface pretreatment and coating,” in 11th European PLACE Conference Proceedings, 0, TAPPI Press, May 2007.
1740. Varella, R., “Business strategies: Surface treatments,” Plastics Decorating, 30-32, (Oct 2008).
374. Vargo, T.G., D.J. Hook, J.A. Gardella Jr., M.A. Eberhardt, A.E. Meyer, and R. Baier, “A multitechnique surface analytical study of a segmented block copolymer poly(ether-urethane) modified through an H2O radio frequency glow discharge,” J. Polymer Science Part A: Polymer Chemistry, 29, 535, (1991).
852. Vargo, T.G., J.A. Gardella Jr., R.L. Schmitt, K.J. Hook, et al, “Low energy ion scattering spectrometry of polymer surface composition and structure,” in Surface Characterization of Advanced Polymers, Sabbatini, L., and P.G. Zambonin, eds., 163-180, VCH, Jul 1993.
656. Vargo, T.G., and J.A. Gardella Jr., “Modification of surfaces designed for cell growth studies,” in Polymer - Solid Interfaces, Pireaux, J.J., P. Bertrand, and J.L. Bredas, eds., 485-494, Institute of Physics Publishing, 1991.
587. Varughese, K.T., P.P. De, and S.K. Sanyal, “Contact angle behavior of poly(vinyl chloride)/epoxidized natural rubber miscible blends,” J. Adhesion Science and Technology, 3, 541-550, (1989).
588. Vavruch, I., “On the determination of the factor between cohesive energy density and surface tension,” J. Colloid and Interface Science, 63, 600+, (1978).
589. Vavruch, I., “On the relation between surface energy, internal pressure and molar volume in pure fluids,” Colloids and Surfaces, 30, 405+, (1988).
2531. Vesel, A., I. Junkar, U. Cvelbar, J. Kovac, and M. Mozetic, “Surface modification of polyester by oxygen- and nitrogen-plasma treatment,” Surface and Interface Analysis, 40, 1444-1453, (Nov 2008).
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m−3, and the neutral atom density was about 4 × 1021 m−3 for oxygen and 1 × 1021 m−3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen-plasma-treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen-plasma-treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma-treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.
2532. Vesel, A., M. Mozetic, A. Hladnik, J. Dolenc, J. Zule, S. Milosevic, et al, “Modification of ink-jet paper by oxygen-plasma treatment,” J. Physics D: Applied Physics, 40, 3689-3696, (2007).
A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 × 1015 m−3 and a density of neutral oxygen atoms of 5 × 1021 m−3. Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment.
2533. Vesel, A., M. Mozetic, and A. Zalar, “XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma,” Surface and Interface Analysis, 40, 661-663, (Apr 2008).
A study on surface modification of extended PTFE (polytetrafluoroethylene) foil after treatment in oxygen and nitrogen plasma is presented. PTFE was exposed to a weakly ionized, highly dissociated RF plasma with a high density of neutral atoms. The gas pressure was 75 Pa and the discharge power was 200 W. The appearance of the functional groups on the sample surface was determined by using high-resolution XPS. The results showed that oxygen plasma treatment did not cause any noticeable changes in the surface composition, while after nitrogen plasma treatment new functional groups were detected on the surface. Copyright © 2008 John Wiley & Sons, Ltd.
2985. Vesel, A., and M. Mozetic, “Surface modification and ageing of PMMA polymer by oxygen plasma treatment,” Vacuum, 86, 634-637, (Jan 2012).
We present a study on ageing of polymethyl methacrylate (PMMA) polymer treated with oxygen plasma. Oxygen plasma was created with an RF generator operating at a frequency of 27.12 MHz and a power of 200 W. The oxygen pressure was 75 Pa. The samples were treated for different time from 5 s to 60 s. The chemical modifications of the surface after plasma treatment were monitored by XPS (X-ray photoelectron spectroscopy), while the wettability and ageing effects were studied by WCA (water contact angle measurements). The samples were aged in dry air or in water. In the case of dry air, the least pronounced ageing was observed for the sample treated for 60 s. For samples aged in water, however, the lowest ageing rate was observed for the sample treated for 5 s. The samples were ageing slightly faster in water than in air. We also investigated the temperature effect on ageing of plasma treated samples. A set of samples was stored in a refrigerator at 5 °C and the other set was placed into an oven at 50 °C. The ageing rate of the samples stored at 5 °C was significantly lower than for the samples stored at 50 °C, so cooling the samples help keeping the required surface properties.An atmospheric pressure plasma syste
887. Veselovsky, R.A., and V.N. Kestelman, Adhesion of Polymers, McGraw-Hill, Dec 2001.
590. Vetelino, K.A., et al, “A novel microsensor technique for polymer surface characterization,” in ANTEC 95, Society of Plastics Engineers, 1995.
1751. Vieira de Vasconcelos Villaca Pinto, G., et al, “Effect of the corona treatment and of the 1,4-cyclohexanedimethanol on the surface characteristics of the poly(ethylene terepthalate) film,” in Polymer Characterization (Macromolecular Symposia 148), Brostow, W., N.A. D'Souza, V.M.C. Menesses, and M. Hess, eds., 333-343, Wiley-VCH, Jan 1999.
2419. Villermet, A., F. Coeuret, and J. Delumeau, “Device for the zonal surface treatment of an article by dielectric barrier discharge,” U.S. Patent 7699022, Apr 2010.
2562. Villermet, A., P. Cocolius, G. Rames-Langlade, F. Coeuret, et al, “ALDYNE surface treatment by atmospheric plasma for plastic films converting industry,” Surface and Coatings Technology, 174-175, 899-901, (Oct 2003).
2706. Vitchuli, N., Q. Shi, J. Nowak, R. Nawalakhe, M. Sieber, M. Bourham, X. Zhang, and M. McCord, “Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric,” J. Adhesion Science and Technology, 27, 924-938, (2013).
Nylon 6 electrospun nanofibers were deposited on plasma-pretreated woven fabric substrates with the objective of improving adhesion between them. The prepared samples were evaluated for adhesion strength and durability of nanofiber mats by carrying out peel strength, flex resistance, and abrasion resistance tests. The test results showed significant improvement in the adhesion of nanofiber mats on woven fabric substrates due to atmospheric plasma pretreatment. The samples also exhibited good flex and abrasion resistance characteristics. X-ray photoelectron spectroscopy and water contact angle analyses indicate that plasma pretreatment introduces radicals, increases the oxygen content on the substrate surface, and leads to formation of active chemical sites that may be responsible for enhanced cross-linking between the substrate fabric and the electrospun nanofibers, which in turn increases the adhesion properties. The work demonstrates that the plasma treatment of the substrate fabric prior to deposition of electrospun nanofiber mats is a promising method to prepare durable functional materials.
703. Voelkel, A., E. Andrzejewska, R. Maga, and M. Andrzejewski, “Dispersive and acid-base properties of poly(dimethacrylate)s surfaces,” Presented at First International Congress on Adhesion Science and Technology, Oct 1995.
591. Vogel, S.L., and H. Schonhorn, “Adhesion of evaporated films onto polyethylene and poly(tetrafluorethylene): importance of surface crosslinking,” J. Applied Polymer Science, 23, 495+, (1979).
620. Vogler, E.A., “On the origins of water wetting terminology,” in Water in Biomaterials Surface Science, Morra, M., ed., 149-182, John Wiley & Sons, Sep 2001.
2342. Von der Heide, J.C., “Guide to corona film treatment,” Plastics Engineering, 17, 199-205, (May 1961).
1600. Vrbanac, M.D., and J.C. Berg, “The use of wetting measurements in the assessment of acid-base interactions at solid-liquid interfaces,” J. Adhesion Science and Technology, 4, 255+, (1990) (also in Acid-Base Interactions: Relevance to Adhesion Science and Technology, K.L. Mittal and H.R. Anderson Jr., eds., p. 67-78, VSP, Nov 1991).
2075. W. Keiko, A. Shin'ya, M. Shuichi, T. Kiyoshi, and F. Akio, “Application of flame treatment for degreasing aluminum foil,” Keikinzoku Gakkai Taikai Koen Gaiyo, 93, 263-264, (1997).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->