Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 63 of 76, ordered by
 

2245. Szymczyk, K., “Wettability of polymeric solids by ternary mixtures composed of hydrocarbon and fluorocarbon nonionic surfactants,” J. Colloid and Interface Science, 363, 223-231, (Nov 2011).

Contact angle (θ) measurements on poly(tetrafluoroethylene) (PTFE) and polymethyl methacrylate (PMMA) surface were carried out for the systems containing ternary mixtures of surfactants composed of: p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100), Triton X-165 (TX165) and Triton X-114 (TX114), and fluorocarbon surfactants, Zonyl FSN100 (FSN100) and Zonyl FSO100 (FSO100). The aqueous solutions of ternary surfactant mixtures were prepared by adding TX114, FSN100 or FSO100 to binary mixtures of TX100+TX165, where the synergistic effect in the reduction of the surface tension of water (γ(LV)) was determined. From the obtained contact angle values, the relationships between cosθ, the adhesion tension and surface tension of solutions, cosθ and the reciprocal of the surface tension were determined. On the basis of these relationships, the correlation between the critical surface tension of PTFE and PMMA wetting and the surface tension of these polymers as well as the work of adhesion of aqueous solutions of ternary surfactant mixtures to PTFE and PMMA surface were discussed. The critical surface tension of PTFE and PMMA wetting, γ(C), determined from the contact angle measurements of aqueous solutions of surfactants including FSN100 or FSO100 was also discussed in the light of the surface tension changes of PTFE and PMMA under the influence of film formation by fluorocarbon surfactants on the surface of these polymers. The γ(C) values of the studied polymeric solids were found to be different for the mixtures composed of hydrocarbon surfactants in comparison with those of hydrocarbon and fluorocarbon surfactants. In the solutions containing fluorocarbon surfactants, the γ(C) values were different taking into account the contact angle in the range of FSN100 and FSO100 concentration corresponding to their unsaturated monolayer at water-air interface or to that saturated.

1641. Szymczyk, K., A. Zdziennicka, J. Krawczyk, and B. Janczuk, “Wettability, adhesion, adsorption and interface tension in the polymer/surfactant aqueous solution system I: Critical surface tension of polymer wetting and its surface tension,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 402, 132-138, (May 2012).

The contact angle of aqueous solutions of Triton X-100, Triton X-114, Triton X-165, sodium dodecylsulfate, sodium hexadecylsulfonate, cetyltrimethylammonium bromide, cetylpyridinium bromide, sodium N-lauryl sarcosinate, dodecyldimethyethylammonium bromide, tetradecyltrimethylammonium bromide and benzyldimethyldodecylammonium bromide on polytetrafluoroethylene, polymethyl methacrylate and nylon 6 was studied. The contact angle values were used in the Young equation for the polymer–solution interface tension calculation and for the determination of the critical surface tension of polymer wetting. The critical surface tension of polymer wetting was obtained on the basis of the relationship between the cosine of contact angle and/or the adhesion tension as a function of the surface tension of aqueous solution of studied surfactants and then was discussed in relation to the Lifshitz–van der Waals components and electron-acceptor and electron-donor parameters of polytetrafluoroethylene, polymethyl methacrylate and nylon 6 surface tension. The role of the parameter of interfacial interactions in the relationship between the critical surface tension of polymer wetting and the surface tension was also considered. This parameter was calculated by using the polymer–solution interface tension as well as the polymer and aqueous solutions of surfactant surface tension.

1759. Szymczyk, K., and B. Janczuk, “Wetting behavior of aqueous solutions of binary surfactant mixtures to poly(tetrafluoroethylene),” J. Adhesion Science and Technology, 22, 1145-1157, (2008).

Measurements of the surface tension (γLV) and advancing contact angle () on poly(tetrafluoroethylene) (PTFE) were carried out for aqueous solutions of cetyltrimethylammonium bromide (CTAB), cetylpyridynium bromide (CPyB), sodium decylsulfate (SDS), sodium dodecylsulfate (SDDS), p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycol)s, Triton X-100 (TX100) and Triton X-165 (TX165) and their mixtures. The results obtained indicate that the values of the surface tension and wettability of PTFE depend on the concentration and composition of the surfactants mixture. In contrast to Zisman finding, there was no linear dependence between cos and the surface tension of aqueous solutions of surfactants and their mixtures for all studied systems, but a linear dependence existed between the adhesional tension and solution surface tension for PTFE in the whole concentration range, the slope of which was –1, indicating that the surface excess concentration of surfactant at the PTFE–solution interface was the same as that at the solution–air interface for a given bulk concentration. It was also found that the work of adhesion of aqueous solutions of surfactants and their mixtures to PTFE surface did not depend on the type of surfactant, its concentration and composition of the mixture. This means that for the studied systems the interaction across PTFE–solution interface was constant, and it was largely of Lifshitz–van der Waals type. On the basis of the surface tension of PTFE and the Young equation and thermodynamic analysis of the work of adhesion of aqueous solutions of surfactants to the polymer surface it was found that in the case of PTFE the changes of the contact angle as a function of the total mixture concentration in the bulk phase resulted only from changes of the polar component of the solution surface tension.

2258. Szymczyk, K., and B. Janczuk, “Wettability of polymeric solids by aqueous solutions of anionic and nonionic surfactant mixtures,” J. Adhesion Science and Technology, 25, 2641-2657, (2011).

Measurements of the surface tension (γLV) and advancing contact angle () on poly(tetrafluoroethylene) (PTFE) and poly(methyl methacrylate) (PMMA) were carried out for aqueous solutions of sodium decyl sulfate (SDS) and p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol) (TX100) and their mixtures. The results obtained indicate that the values of the surface tension and contact angles of solutions of surfactants on PTFE and PMMA surfaces depend on the concentration and composition of the surfactant mixtures. Calculations based on the Lucassen-Reynders equation indicate that for single surfactants and their mixtures at a given concentration in the bulk phase the values of surface excess concentration of surfactants at water–air and PTFE–water interfaces are nearly the same, so the adsorption of the surfactants at water–air and PTFE–water interfaces should also be the same. However, the adsorption of TX100 and its mixtures with SDS at water–air interface is higher than that at PMMA–water interface, which is confirmed by the ratio of absolute values of molecular interaction parameters at these interfaces calculated on the basis of Rosen approach. If we take into account the hydration of the poly(ethylene oxide) chains of TX100 and acid and base parameters of the surface tension of water it appears that the PMMA surface is covered by the 'pure' water molecules from the solution or molecules connected with the chain of nonionic surfactant. On the other hand, the lack of SDS molecules at the PMMA–water interface may result from the formations of its micelles which are connected with the TX100 chain.

2479. Tadmor R., “Line energy and the relation between advancing, receding, and Young contact angles,” Langmuir, 20, 7659-7664, (Jul 2004).

The line energy associated with the triple phase contact line is a function of local surface defects (chemical and topographical); however, it can still be calculated from the advancing and receding contact angles to which those defects give rise. In this study an expression for the line energy associated with the triple phase contact line is developed. The expression relates the line energy to the drop volume, the interfacial energies, and the actual contact angle (be it advancing, receding, or in between). From the expression we can back calculate the equilibrium Young contact angle, θ 0, as a function of the maximal advancing, θ A, and minimal receding, θ R, contact angles. To keep a certain maximal hysteresis between advancing and receding angles, different line energies are required depending on the three interfacial energies and the drop's volume V. We learn from the obtained expressions that the hysteresis is determined by some dimensionless parameter, script K sign, which is some normalized line energy. The value of script K sign required to keep a constant hysteresis (θ A - θ R) rises to infinity as we get closer to θ 0 = 90°.

1831. Tadros, M.E., P. Hu, and A.W. Adamson, “Adsorption and contact angle studies I: Water on smooth carbon, linear polyethylene, and stearic-acid coated copper,” J. Colloid and Interface Science, 49, 184-195, (Nov 1974).

2249. Tag, C.M., M. Pykonen, J.B. Rosenhelm, and K. Backfolk, “Wettability of model fountain solutions: The influence on topo-chemical and -physical properties of offset paper,” J. Colloid and Interface Science, 330, 428-436, (Feb 2009).

The surface chemical and physical character of offset paper was studied before and after application of model fountain solutions based on isopropyl alcohol and an alcohol-free surfactant solution. The paper surface features were characterised with atomic force microscopy and the surface energies were determined by contact angle measurements. Changes in the surface chemical properties induced by the fountain solutions were investigated with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Coated papers wetted with the surfactant solution revealed a slight increase in the root mean square roughness, but the isopropyl alcohol solution led to no observable changes. The change in sub-micro roughness is ascribed not only to substrate swelling or migration of coating constituents but also to the presence of surfactant on the surface. A change in the surface energy and particularly the polar contribution was observed after application of the surfactant solution. The X-ray photoelectron spectroscopy showed an increase in the oxygen-to-carbon ratio, which confirms the presence of surfactant on the surface. Time-of-flight secondary ion mass spectroscopy showed that the isopropyl alcohol solution did not change the elemental composition of the surface whereas the surfactant solution clearly did so. The distribution of surfactant on the surface was confirmed by mapping the characteristic fragments of the molecule.

2366. Tagaki, T., “Corona producing a planographic printing sheet,” U.S. Patent 4036136, Jul 1977.

1829. Tagawa, M., K. Gotoh, A. Yasukawa, and M. Ikuta, “Estimation of surface free energies and Hamaker constants for fibrous solids by wetting force measurements,” Colloid and Polymer Science, 268, 589-594, (Jun 1990).

1830. Tagawa, M., N. Ohmae, M. Umeno, K. Gotoh, and A. Yasukawa, “Contact angle hysteresis in carbon fibers studied by wetting force measurements,” Colloid and Polymer Science, 267, 702-706, (Aug 1989).

1581. Tahara, M., N.K. Cuong, and Y. Nakashima, “Improvement in adhesion of polyethylene by glow-discharge plasma,” Surface and Coatings Technology, 174, 826-830, (Sep 2003).

1256. Tajima, S., and K. Komvopoulos, “Surface modification of low-density polyethylene by inductively coupled argon plasma,” J. Physical Chemistry B, 109, 17623-17629, (Aug 2005).

The surface chemistry and nanotopography of low-density polyethylene (LDPE) were modified by downstream, inductively coupled, radio frequency (rf) Ar plasma without inducing surface damage. The extent of surface modification was controlled by the applied ion energy fluence, determined from the plasma ion density measured with a Langmuir probe. The treated LDPE surfaces were characterized by atomic force microscope (AFM) imaging, contact angle measurements, and X-ray photoelectron spectroscopy (XPS). Analysis of AFM surface images confirmed that topography changes occurred at the nanoscale and that surface damage was insignificant. Contact angle measurements demonstrated an enhancement of the surface hydrophilicity with the increase of the plasma power. XPS results showed surface chemistry changes involving the development of different carbon-oxygen functionalities that increased the surface hydrophilicity. Physical and chemical surface modification was achieved under conditions conducive to high-density inductively coupled rf plasma.

1257. Takahashi, N., A. Goldman, M. Goldman, and J. Rault, “Surface modification of LDPE by a DC corona discharge generated in a point-to-grid system: The influence of geometric parameters of the system on modification power,” J. Electrostatics, 50, 49-63, (Sep 2000).

755. Takata, T. and M. Furukawa, “Surface modification of aramid fibers by a low temperature plasma to improve their adhesion,” in Metallized Plastics: Fundamentals and Applications, Mittal, K.L., ed., 251-268, Marcel Dekker, Nov 1997.

1828. Tamai, Y., T. Matsunaga, and K. Horiuchi, “Surface energy analysis of several organic polymers: Comparision of the two-liquid-contact-angle method with the one-liquid-contact-angle method,” J. Colloid and Interface Science, 60, 112-116, (Jun 1977).

1102. Tamm, R.R., “Effect of film additives on printing,” in 1998 Polymers, Laminations and Coatings Conference Proceedings, 1067-1071, TAPPI Press, Sep 1998.

1432. Tanaka, K., and M. Kogoma, “Investigation of a new reactant for fluorinated polymer surface treatments with atmospheric pressure glow plasma to improve the adhesive strength,” Intl. J. Adhesion and Adhesives, 23, 515-519, (2003).

1090. Tanaka, T., M. Yoshida, M. Shinohara, S. Watanabe, and T. Takagi, “Surface modification of PET films by plasma source ion implantation,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 3, Mittal, K.L., ed., 69-82, VSP, Sep 2004.

797. Tatoulian, M., F. Cavalli, G. Lorang, J. Amouroux, and F. Arefi-Khonsari, “Copper metallization of plasma-treated fluorinated polymers: study of the interface and adhesion measurements,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 2, Mittal, K.L., ed., 183-198, VSP, Dec 2000.

1074. Tavakoli, S.M., and S.T. Riches, “Laser surface modification of polymers to enhance adhesion, I: Polyolefins,” in Antec '96 Vol. 1, 1219-1224, Society of Plastics Engineers, May 1996.

1259. Tavana, H., N. Petong, A. Hennig, K. Grundke, and A.W. Neumann, “Contact angles and coating film thickness,” J. Adhesion, 81, 29-39, (Jan 2005).

The effect of film thickness and surface preparation techniques on contact angles of water, 1-bromonaphtalene, and n-hexadecane on Teflon® AF 1600 polymeric surfaces is studied. It was found that contact angles of water on different thicknesses of spin-coated films ranging from 27 nm to 420 nm are essentially constant. This is due to the homogeneity and smoothness of the coating layers as shown by the scanning force microscopy of the samples. Furthermore, the contact angle measurements with these three liquids on both dip-coated and spin-coated films suggested that the film preparation technique does not affect contact angles dramatically. Interestingly, slightly higher contact angles on dip-coated surfaces were measured. It is also argued that the anomaly of the water contact angle—in the sense that the measured contact angle is much higher than the expected ideal value—is due to specific interactions between water and Teflon®.

1258. Tavana, H., R. Gitiafroz, M. Hair, and A.W. Neumann, “Determination of solid surface tension from contact angles: The role of shape and size of liquid molecules,” J. Adhesion, 80, 705-725, (Aug 2004).

Accurate surface tension of Teflon® AF 1600 was determined using contact angles of liquids with bulky molecules. For one group of liquids, the contact angle data fall quite perfectly on a smooth curve corresponding to γsv = 13.61 mJ/m2, with a mean deviation of only ±0.24 degrees from this curve. Results suggest that these liquids do not interact with the solid in a specific fashion. However, contact angles of a second group of liquids with fairly bulky molecules containing oxygen atoms, nitrogen atoms, or both deviate somewhat from this curve, up to approximately 3 degrees. Specific interactions between solid and liquid molecules and reorientation of liquid molecules in the close vicinity of the solid surface are the most likely causes of the deviations. It is speculated that such processes induce a change in the solid–liquid interfacial tension, causing the contact angle deviations mentioned above. Criteria are established for determination of accurate solid surface tensions.

3018. Tavana, H., and A.W. Neumann, “Recent progress in the determination of solid surface tensions from contact angles,” Advances in Colloid and Interface Science, 132, 1-32, (Mar 2007).

1050. Telo da Gama, M.M., “Theory of wetting and surface critical phenomena,” in Computer Simulations of Surfaces and Interfaces, Dunweg, B., D.P. Landau, and A.I. Milchev, eds., 239-260, Kluwer Academic, Dec 2003.

1441. Teltech Resources Network Corp., “Low surface energy substrates present bonding challenges,” Adhesives Age, 39, 38-44, (Oct 1996).

2584. Temmerman, E., Y. Ashikev, N. Trushkin, C. Leys, and J. Verschuren, “Surface modification with a remote atmospheric pressure plasma DC glow discharge and surface streamer regime,” J. Physics D: Applied Physics, 38, 505-509, (Feb 2005).

A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure.

2561. Tendero, C., C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, 961, 2-30, (Jan 2006).

This article attempts to give an overview of atmospheric plasma sources and their applications. The aim is to introduce, in a first part, the main scientific background concerning plasmas as well as the different atmospheric plasma sources (description, working principle). The second part focuses on the various applications of the atmospheric plasma technologies, mainly in the field of surface treatments.Thus this paper is meant for a broad audience: non-plasma-specialized readers will find basic information for an introduction to plasmas whereas plasma spectroscopists who are familiar with analytical plasmas may be interested in the synthesis of the different applications of the atmospheric pressure plasma sources.

362. Teresi, J., “Controlling surface tension,” Flexo, 22, 58-63, (Feb 1997).

363. Tezuka, Y., A. Fukushima, S. Matsui, and K. Imai, “Surface studies on poly(vinyl alcohol)-poly(dimethylsiloxane) graft copolymers,” J. Colloid and Interface Science, 114, 16-25, (1986).

1051. Theodorou, D.N., “Polymers at surfaces and interfaces,” in Computer Simulations of Surfaces and Interfaces, Dunweg, B., D.P. Landau, and A.I. Milchev, eds., 329-422, Kluwer Academic, Dec 2003.

364. Thomas, H.R., and J.J. O'Malley, “Surface studies on multicomponent polymer systems by x-ray photoelectron spectroscopy.Polystyrene/poly(ethylene oxide) diblock copolymers,” Macromolecules, 12, 323-329, (1979).

2491. Thomas, M., M. Eichler, K. Lachmann, J. Borris, A. Hinze, and C.-P. Klages, “Adhesion improvement by nitrogen functionalization of polymers using DBD-based plasma,” in Atmospheric Pressure Plasma Treatment of Polymers, Thomas, M., and K.L. Mittal, eds., 251-274, Scrivener, 2013.

1825. Thomas, M., and K.L. Mittal, eds., Atmospheric Pressure Plasma Treatment of Polymers, Scrivener, 2013.

582. Thompson, K., “Flame surface treatment - new perspectives,” in 1987 Polymers, Laminations and Coatings Conference Proceedings, 213-216, TAPPI Press, Aug 1987.

583. Thompson, K., “Surface treatments for coextruded polymer films and coatings,” in 1989 Coextrusion Seminar Proceedings, 11-12, TAPPI Press, 1989.

3000. Thompson, R., D. Austin, C. Wang, A. Neville, and L. Lin, “Low-frequency plasma activation of nylon 6,” Applied Surface Science, 544, (Apr 2021).

In the study reported in this paper, a series of reproducible conditions were employed to uniformly functionalize nylon 6 surfaces using a commercially available, low-frequency (40 kHz), low-pressure plasma system, utilizing oxygen plasma as a reactive gas. Initially, the plasma-treated samples were investigated using static contact angle measurements, showing a progressive increase in wettability with increasing plasma activation time between 10 and 40 s. Such an increase in wettability (and therefore increase in adhesive capabilities of the surfaces) was attributed to the creation of surface C-OH, C=O, and COOH groups. These surface-chemical modifications were characterized using x-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectrometry (SSIMS). Surface radical densities were also shown to increase following plasma activation, having been quantified using a radical scavenging method based on the molecule 2,2-diphenyl-1-picrylhydrazyl (DPPH). The samples were imaged and analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), to confirm that there had been no detectable alteration to the surface roughness or morphology. Additionally, the “hydrophobic recovery” or “ageing” of the activated polymer samples, post-plasma treatment, was also investigated in terms of wettability and surface-chemistry, with the wettability of the sample surfaces decreasing over time due to a reduction in surface-oxygen concentration.

2387. Thurm, S., U. Reiners, I. Schinkel, and M. Kowitz, “Process for the treatment of polyolefin films,” U.S. Patent 5152879, Oct 1992.

2051. Thurston, R.M., J.D. Clay, and M.D. Schulte, “Effect of atmospheric plasma treatment on polymer surface energy and adhesion,” J. Plastic Film and Sheeting, 23, 63-78, (Jan 2007).

This study describes experiments to quantify polymer surface energy changes after exposure to atmospheric plasma. Atmospheric plasma treatment permits surface functionalization at near-ambient temperatures. Polyethylene and polystyrene are treated with an atmospheric plasma unit. The increased surface energy and improved wetting characteristics lead to a significant adhesion improvement with adhesives that cannot be used without surface treatment.

844. Tiburcio, A.C., and J.A. Manson, “The effects of filler/polymer acid-base interactions in model coating systems,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Mittal, K.L., and H.R. Anderson Jr., eds., 313-328, VSP, Nov 1991.

1545. Tietje, A., “Corona treating systems for coater-laminators,” in TAPPI 1978 Conference Proceedings, 173+, TAPPI Press, 1978.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->