ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 58 of 76, ordered by
1608. Sharpe, L.H., and H. Schonhorn, “Surface energetics, adhesion, and adhesive joints,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 189-201, American Chemical Society, 1964.
2961. Shaw, D.R., P.M. Gyuk, A.T. West, M. Momoh, and E. Wagenaars, “Surface modification of polymer films using an atmospheric-pressure plasma jet,” Presented at 22nd International Symposium on Plasma Chemistry, Jul 2015.
1251. Shen, W., B. Hutton, and F. Liu, “A new understanding on the mechanism of fountain solution in the prevention of ink transfer to the non-image area in conventional offset lithography,” J. Adhesion Science and Technology, 18, 1861-1887, (2004).
In conventional offset lithographic printing, it has been well established that the existence of a continuous layer of fountain solution (FS) on the surface of the non-image area is an essential condition to ensure correct operation of lithography. However, the mechanistic function of FS in preventing the ink from being transferred onto the non-image area has not been fully understood. Several major mechanistic interpretations can be found in the literature, which are based either on comparing of static works of adhesion and cohesion of ink and FS, or on the splitting of the 'weaker' FS layer. Although the latter becomes more accepted, direct experimental evidence is difficult to find in the literature. On the other hand, confusing information found in the literature showed that the ink-transfer (or non-transfer) observations reported in many case studies correlate well with simple comparisons of works of adhesion, cohesion and spreading data of ink/FS, ink/plate and FS/plate obtained under the static condition. These results, therefore, imply that, in explaining the function of FS in preventing ink transfer to the non-image area, the ink/FS interfacial adhesion failure would be the dominant mechanism. The work presented in this study covered two specific areas in order to address and better understand the responses of ink and FS layers and their interface to forces encountered during ink transfer. Firstly, an analysis of lithographic plates contaminated with a cationic polymer revealed that the violation of the ink non-transfer condition of the plate non-image area due to contamination could be predicted by traditional criteria of plate wetting and works of adhesion and cohesion. However, these traditional criteria cannot reliably predict the non-transfer condition of the ink on the clean non-image area that was covered by FS. Secondly, in some novel experiments conducted in this study using ice or Teflon as a substrate, the works of adhesion and cohesion were not able to predict ink transfer in most cases. Direct experimental evidence from this work revealed that splitting of the FS layer was involved in the prevention of ink transfer to the non-image areas, and that the thickness of the FS layer was critical in allowing the splitting to occur.
334. Sheng, E., I. Sutherland, D.M. Brewis, and R.J. Heath, “Effects of flame treatment on propylene-ethylene copolymer surfaces,” Surface and Interface Analysis, 19, 151-156, (1992).
2091. Sheng, E., I. Sutherland, D.M. Brewis, and R.J. Heath, “An X-ray photoelectron spectroscopy study of flame treatment of polypropylene,” Applied Surface Science, 78, 249-254, (1994).
333. Sheng, E., R.J. Heath, I. Sutherland, and D.M. Brewis, “Surface modification of propylene by flame treatment - a study,” Plastics and Rubber International, 16, 10-12, (Aug 1991).
2099. Shenton, M.J., G.C. Stevens, N.P. Wright, and X. Duan, “Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas,” J. Polymer Science Part A: Polymer Chemistry, 40, 95-109, (Jan 2002).
1040. Shenton, M.J., M.C. Lovell-Hoare, and G.C. Stevens, “Adhesion enhancement of polymer surfaces by atmospheric plasma treatment,” J. Physics D: Applied Physics, 34, 2754-2760, (Sep 2001).
1382. Shenton, M.J., and G.C. Stevens, “Investigating the effect of the thermal component of atmospheric plasmas on commodity polymers,” Thermochimica Acta, 332, 151-160, (Jul 1999).
1528. Shenton, M.J., and G.C. Stevens, “Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments,” J. Physics D: Applied Physics, 34, 2761-2768, (Sep 2001).
336. Sherman, P.B., “Technological advancements improve corona treatment,” Flexo, 17, 74-78, (May 1992).
339. Sherman, P.B., “Use of ozone can improve production environment,” Paper Film & Foil Converter, 68, 42-44, (Oct 1994).
340. Sherman, P.B., “Living comfortably with water-based inks,” Flexo, 20, 36-39, (Jun 1995).
570. Sherman, P.B., “Corona treatment - label presses,” Converter, 24, 6-7, (Feb 1987).
571. Sherman, P.B., “Adhesion promotion on ultra-wide webs,” in 1989 Polymers, Laminations and Coatings Conference Proceedings, 169-194, TAPPI Press, Aug 1989.
572. Sherman, P.B., “Additive influence in corona treatment,” in 1991 Film Extrusion Short Course, 119-130, TAPPI Press, 1991.
573. Sherman, P.B., “Surface preparation techniques,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.
574. Sherman, P.B., “The benefits of ozone in extrusion coating,” in 1996 Polymers, Laminations and Coatings Conference Proceedings, TAPPI Press, 1996.
730. Sherman, P.B., “Ozonation of polymer melt for improved adhesion,” in Extrusion Coating Manual, 4th Ed., Bezigian, T., ed., 75-88, TAPPI Press, Feb 1999.
1403. Sherman, P.B., “Quartz, ceramic or rubber dielectric in corona treatment,” in 1985 Polymers, Laminations and Coatings Conference Proceedings, 341, TAPPI Press, Aug 1985.
1404. Sherman, P.B., “Corona treat - mechanical not electrical problem,” in 1985 Film Extrusion Conference Proceedings, 45, TAPPI Press, 1985.
2761. Sherman, P.B., “Technical tips on corona treatment on polymeric films,” in 1997 Polymers, Laminations and Coatings Conference Proceedings, 111-120, TAPPI Press, Aug 1997.
2918. Sherman, P.B., “Corona discharge treatment,” in Conference Record of the 1993 IEEE Industry Applications Conference, 1669-1685, IEEE, Aug 1993.
335. Sherman, P.B., D. Clarke, and J. Marriott, “Significant improvements to extrusion coating processing aids,” in 1991 Polymers, Laminations and Coatings Conference Proceedings, 119-130, TAPPI Press, Aug 1991.
338. Sherman, P.B., S. Greig, and E.H. Gray, “Adhesion promoters in the manufacture of self-adhesive materials,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 201-210, TAPPI Press, Sep 1994.
337. Sherman, P.B., S. Greig, and M.P. Garrard, “Corona generated ozone - its in-house destruction,” in 1992 Polymers, Laminations and Coatings Conference Proceedings, 325-334, TAPPI Press, Aug 1992.
2767. Sherman, P.B., and M.P. Garrard, “Surface treatments for plastic films and containers,” in Plastics: Surface and Finish, 2nd Ed., Simpson, W.G., ed., 221-236, Royal Society of Chemistry, 1995.
1977. Sherriff, M., “Polar and dispersion contributions to solid surface tension: A reconsideration of their mathematical evaluation,” J. Adhesion, 7, 257-259, (1976).
575. Sheth, P., “Wettable and dyeable polyolefin technology and application,” in Polyolefins X, Society of Plastics Engineers, Feb 1997.
1878. Sheu, G.S., and S.S. Shyu, “Surface modification of Kevlar 149 fibers by gas plasma treatment, II: Improved interfacial adhesion to epoxy resin,” J. Adhesion Science and Technology, 8, 1027-1042, (1994).
1879. Sheu, G.S., and S.S. Shyu, “Surface modification of Kevlar 149 fibers by gas plasma treatment,” J. Adhesion Science and Technology, 8, 531-542, (1994).
775. Sheu, M.-S., G.M. Patch, I.-H. Loh, and D.A. Buretta, “Tenaciously bound hydrophilic coatings on polymer surfaces,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, Mittal, K.L., and K.-W. Lee, eds., 83-90, VSP, Jun 1997.
2814. Shi, F., B. Zhang, J. Ii, and Y. Hei, “Relationship of carbon fiber surface composition to surface energy,” AVIC Composite Co. Ltd.,
806. Shi, M.K., A. Selmani, L. Martinu, E. Sacher, M.R. Wertheimer, and A. Yelon, “Fluoropolymer surface modification for enhanced evaporating,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 73-86, VSP, May 1996.
1444. Shi, M.K., A. Selmani, L. Martinu, E. Sacher, M.R. Wertheimer, and A. Yelon, “Fluoropolymer surface modification for enhanced evaporated metal adhesion,” J. Adhesion Science and Technology, 8, 1129-1141, (1994).
1252. Shi, M.K., G. Dunham, M.E. Gross, G.L. Graff, and P.M. Martin, “Plasma treatment of PET and acrylic coating surfaces, I. In-situ XPS measurements,” J. Adhesion Science and Technology, 14, 1485-1498, (2000).
772. Shi, S.Q., and D.J. Gardner, “A new model to determine contact angles on swelling polymer particles by the column wicking method,” in Apparent and Microscopic Contact Angles, Drelich, J., J.S. Laskowski, and K.L. Mittal, eds., 431-444, VSP, Jun 2000.
2481. Shieh, S., “An analysis of contact angle measurement,” AST Products, Mar 2001.
2686. Shimizu, R.N., and N.R. Demarquette, “Evaluation of surface energy of solid polymers using different methods,” J. Applied Polymer Science, 76, 1831-1845, (2000).
576. Shu, L.-K., “Contact angles and determination of the components of surface energy of polymer surfaces (PhD dissertation),” SUNY Buffalo, 1991.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->