Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 55 of 76, ordered by
 

998. Sako, N., T. Matsuoka, and K. Sakaguchi, “Changes and control of plasma modified surface energy of polypropylene with aging time and temperature,” in Adhesion '99, 395-400, Institute of Materials, 1999.

1035. Sako, N., T. Matsuoka, and K. Sakaguchi, “Effect of interface on fracture mechanism of GF/PP composites using O2 plasma treatment,” Composite Interfaces, 4, 401-415, (1997).

927. Salmaggi, H.L, “Flexo finds the answer: How does the treater roll get affected by dirt, dust, or ink, and how should it be cleaned?,” Flexo, 21, 96, (Feb 1996).

2891. Samuel, B., H. Zhao, and K.-Y. Law, “Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces,” J. Physical Chemistry C, 115, 14852-14861, (Jun 2011).

The wetting and adhesion characteristics of 20 different surfaces have been studied systematically by both static water contact angle (θ) and dynamic contact angle measurement techniques: sliding angle (α) and advancing (θA) and receding (θR) contact angles. These surfaces cover surfaces of all traits, from smooth and flat to rough and artificially textured. Fourteen of the surfaces are flat, and they range from molded plastic sheets to solution coated polymer films to chemical vapor deposition polymerized polymer films and to self-assembled monolayers on Si wafers. The rest of the surfaces include 4 fluorosilane coated textured Si wafer surfaces and two natural surfaces derived from the front and back side of the rose petal. Static water contact angle data suggest that these surfaces vary from hydrophilic with θ at ∼71° to superhydrophobic with θ exceeding 150°. Plots of θ of these surfaces versus α, (cos θR – cos θA), and the contact angle hysteresis (θA – θR) all yield scattered plots, indicating that there is little correlation between θ and α, (cos θR – cos θA) and (θA – θR). Since the later three parameters have been mentioned to relate to adhesion semiempirically between a liquid droplet and the contacting surface, the present work demonstrates with generality that contact angle indeed does not relate to adhesion. This is consistent with a known but not well recognized fact in the literature. In this work, we study both the wetting and adhesion forces between water and these 20 surfaces on a microelectromechanical balance (tensiometer). When the water drop first touches the surface, the attractive force during this wetting step was measured as the “snap-in” force. The adhesion force between the water drop and the surface was measured as the “pull-off” force when the water drop separates (retracts) from the surface. The snap-in force is shown to decrease monotonously as θA decreases and becomes zero when θA is >150°. The very good correlation is not unexpected due to the similarity between the wetting and the “snap-in” process. The analysis of the pull-off force data is slightly more complicated, and we found that the quality of the water–surface separation depends on the surface “adhesion”. For surfaces that show strong adhesion with water, there is always a small drop of water left behind after the water droplet is pulled off from the surface. Despite this complication, we plot the pull-off force versus α, (cos θR – cos θA) and (θA – θR), and found very little correlation. On the other hand, the pull-off force is found to correlate well to the receding contact angle θR. Specifically, pull-off force decreases monotonically as θR increases, suggesting that θR is a good measure of surface adhesion. Very interestingly, we also observe a qualitative correlation between θR and the quality of the pull-off. The pull-off was found to be clean, free of water residue after pull-off, when θR is >∼90° and vice versa. The implications of this work toward surface contact angle measurements and print surface design are discussed.

2635. Samuel, J., and J. Renner, “UV inkjet label printing: Getting it right on the customer's substrate,” Radtech Report, 11-14, (Jul 2011).

Drop-on-demand inkjet printing, familiar to most of us from small home and office printers, is taking an increasing role in printing for the broader commercial and industrial market. Inkjet printing has made serious inroads into the market for printing banners and signs of all sorts. Wide-format and super wide-format printing is now the norm and has, to an increasing degree, superseded analog printing as the method of choice for printing large format and point-of-purchase signage. Overall, inkjet printing has now taken over 30 percent of the general sign and banner market. One area of printing that holds promise for future growth is that of packaging and labels. Many forms of commercial printing, although a huge market today, are threatened on multiple fronts from various forms of electronic media. Printing and decoration for packaging, on the other hand, is expected to increase in volume in the foreseeable future. In spite of this great promise, penetration of digital printing, in general, and inkjet printing, in particular, into packaging and label printing is still in the low single digits. This article will focus on the label market as an example of printing for packaging. Printing for packaging is a much broader and diverse subject than just labels, but many of the conclusions that follow can be extrapolated to the broader packaging market. Toner-based methods, both wet and dry, have been at the vanguard of penetrating the label market. Today, inkjet is slowly gaining market share. Inkjet has great potential because there is more flexibility in the type and characteristics of fluids that can be applied from an inkjet head. While there are many possible explanations for the relatively low penetration of digital printing into this market, this article will concentrate on the technical challenges involved in reliably printing labels of acceptable quality with inkjet printing. Only now is the inkjet printing industry overcoming these challenges.

1094. Sancaktar, E., and N. Sunthonpagasit, “Surface modification of polypropylene for improved adhesion,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 3, Mittal, K.L., ed., 285-324, VSP, Sep 2004.

309. Sanchez-Rubio, M., J.R. Castellanos-Ortega, and J.E. Puig, “An analytical balance as tensiometer and densimeter,” J. Chemical Education, 68, 158-160, (1991).

555. Sanchez-Valdes, S., et al, “Characterization of LLDPE-LLDPEgMA blends by contact angle and FTIR-ATR,” in ANTEC 97, Society of Plastics Engineers, Apr 1997.

2018. Sanchis, M.R., O. Calvo, O. Fenollar, D. Garcia, and R. Balart, “Surface modification of a polyurethane film by low pressure glow discharge oxygen plasma treatment,” J. Applied Polymer Science, 105, 1077-1085, (2007).

2089. Sanchis, M.R., O. Calvo, O. Fenollar, D. Garcia, and R. Balart, “Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film,” Polymer Testing, 27, 75-83, (Feb 2008).

In this work, low-pressure nitrogen plasma has been used to improve wettability in a polyurethane film. Evaluation of wettability changes has been carried out using contact angle measurements. Furthermore, plasma-treated films have been subjected to air aging to evaluate the extent of hydrophobic recovery. X-ray photoelectron spectroscopy (XPS) has been used to study surface functionalization; surface topography changes related with the etching mechanism have been followed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and weight loss study. The results show a considerable improvement in surface wettability even for short exposure times, as observed by a remarkable decrease in contact angle values. The aging study shows a partial hydrophobic recovery due to the re-arrangement of polar species and migration of low molecular oxidized material (LMWOM). In addition to surface activation, SEM and AFM analyses show slight changes in surface topography as a consequence of the plasma-etching mechanism.

2062. Sanchis, M.R., V. Blanes, M. Blanes, D. Garcia, and R. Balart, “Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment,” European Polymer J., 42, 1558-1568, (Jul 2006).

In this work, low pressure glow discharge O2 plasma has been used to increase wettability in a LDPE film in order to improve adhesion properties and make it useful for technical applications. Surface energy values have been estimated using contact angle measurements for different exposure times and different test liquids. In addition, plasma-treated samples have been subjected to an aging process to determine the durability of the plasma treatment. Characterization of the surface changes due to the plasma treatment has been carried out by means of Fourier transformed infrared spectroscopy (FTIR) to determine the presence of polar species such as carbonyl, carboxyl and hydroxyl groups. In addition to this, atomic force microscopy (AFM) analysis has been used to evaluate changes in surface morphology and roughness. Furthermore, and considering the semicrystalline nature of the LDPE film, a calorimetric study using differential scanning calorimetry (DSC) has been carried out to determine changes in crystallinity and degradation temperatures induced by the plasma treatment. The results show that low pressure O2 plasma improves wettability in LDPE films and no significant changes can be observed at longer exposure times. Nevertheless, we can observe that short exposure times to low pressure O2 plasma promote the formation of some polar species on the exposed surface and longer exposure times cause slight abrasion on LDPE films as observed by the little increase in surface roughness.

816. Sanchis, R.M., O. Calvo, L. Sanchez, D. Garcia, and R. Balart, “Enhancement of wettability in low density polyethylene films using low pressure glow discharge N2 plasma,” J. Polymer Science Part B: Polymer Physics, 45, 2390-2399, (2007).

Low pressure glow discharge nitrogen plasma has been used to improve wettability in a low density polyethylene (LDPE) film for technical applications. The plasma treatment was carried out at a power of 300 W for different exposure times in the 1–20 min range. Wettability changes were analyzed using contact angle measurements. In addition to this, plasma-treated samples were subjected to an aging process to determine the durability of the plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy were used for surface characterization. The nitrogen plasma treatment considerably reduced contact angle values thus indicating an increase in surface wettability. The spectroscopic study showed presence of oxygen-based species on the plasma-treated samples, which are mainly generated after the plasma treatment as a consequence of air exposure. These polar species contribute to improve surface functionalization, but this is almost lost during aging due to the hydrophobic recovery process. Microscopic studies revealed that also small changes in surface roughness occurred during the plasma treatment but these are very low compared to surface activation. The results confirmed that low pressure nitrogen can be considered as an environmentally efficient process to improve wettability in low density polyethylene films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2390–2399, 2007

1633. Sapieha, S., J. Cerny, J.E. Klemberg-Sapieha, and L. Martinu, “Corona versus low pressure plasma treatment: Effect on surface properties and adhesion of polymers,” J. Adhesion, 42, 91, (1993).

556. Sarabia, A., “Plasma surface treatment of poly(phenyl sulfide) and poly(etheretherketone) prior to adhesive bonding (MS thesis),” MIT, 1987.

1130. Sardella, E., R. Gristina, G.S. Senesi, R. d'Agostino, and P. Favia, “Plasma-aided micropatterning of polystyrene substrates for driving cell adhesion and spreading,” in Plasma Processes and Polymers, d'Agostino, R., P. Favia, C. Oehr, and M.R. Wertheimer, eds., 373-388, Wiley-VCH, 2005.

2527. Sarmadi, A.M., T,.H. Ying, and F. Denes, “HMDSO-plasma modification of polypropylene fibers,” European Polymer J., 31, 847-857, (Sep 1995).

310. Sarmadi, M., and F. Denes, “Surface modification of polymers under cold plasma conditions,” TAPPI J., 79, 189-204, (Aug 1996).

2528. Sarra-Bournet, C., G. Ayotte, S. Turgeon, F. Massines, and G. Laroche, “Effects of chemical composition and the addition of H2 in a N2 atmospheric pressure dielectric barrier discharge on polymer surface functionalization,” Langmuir, 25, 9432-9440, (2009).

We examined the effect of hydrogen content in various polymers in a N2/H2 discharge for surface amine functionalization. Three polymers (polyethylene (PE), polyvinylidene fluoride (PVDF), and poly(tetrafluoroethylene) (PTFE)) containing various amounts of hydrogen and fluorine were treated with an atmospheric pressure dielectric barrier discharge (DBD). While surface modification was observed on the PE and the PVDF in a pure N2 discharge, adding H2 in a N2 discharge was necessary to observe the fluorine etching on the surface of the PVDF and PTFE polymers. The presence of a slight amount of hydrogen in the gas mixture was also a prerequisite to the formation of amino groups on the surface of all three polymers (max NH2/C ∼ 5%). Aging revealed that the modified polymer surfaces treated in a N2−H2 discharge were less prone to hydrophobic recovery than were surfaces treated in pure N2, due primarily to the presence of a higher density of polar groups on the surfaces. We demonstrated that H atoms in the discharge are necessary for the surface amine functionalization of polymers in a N2 atmospheric pressure DBD, regardless of polymer chemical composition. It is therefore possible to control the plasma functionalization process and to optimize the concentration and specificity of NH2 grafted onto polymer surfaces by varying the H2 concentration in a N2 atmospheric pressure DBD.

2276. Sarra-Bournet, C., S. Turgeon, D. Mantovani, and G. Laroche, “Comparison of atmospheric-pressure plasma versus low-pressure RF plasma for surface functionalization of PTFE for biomedical applications,” Plasma Processes and Polymers, 3, 506-515, (Aug 2006).

PTFE surface modifications have been realized using low-pressure RFGD, DBD and APGD in different atmospheres. Compared to the RFGD NH3 plasma, the DBDs operating in H2/N2 lead to similar surface concentrations of amino groups and similar surface damage, but with a much higher specificity. Both APGDs in H2/N2 and NH3/N2 lead to lower concentrations of amino groups, but with similar specificity, and with lower surface damage than the RFGD treatment. A method is proposed to evaluate the efficiency of the different discharges for amine surface functionalization of PTFE, and it is concluded that the NH3/N2 APGD discharge is the one that give the best results for an effective surface treatment.

2558. Sarra-Bournet, C., S. Turgeon, D. Mantovani, and G. Laroche, “A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications,” J. Physics D: Applied Physics, 39, 3461-3469, (2006).

Plasma polymer surface modification is widely used in the biomedical field to tailor the surface properties of materials to improve their biocompatibility. Most of these treatments are performed using low pressure plasma systems but recently, filamentary dielectric barrier discharge (FDBD) and atmospheric pressure glow discharge (APGD) have appeared as interesting alternatives. The aim of this paper is to evaluate the potential of surface modifications realized with FDBD and APGD in different atmospheres (N2+ H2 and N2+ NH3 mixtures) on poly(tetrafluoroethylene) to determine the relative influence of both the discharge regime and the gas nature on the surface transformations. From XPS analysis, it is shown that the discharge regime can have a significant effect on the surface transformation; FDBDs operating in H2/N2 lead to a high concentration of amino-groups with high specificity but also important damaging on the surface. Glow discharges in both H2/N2 and NH3/N2 lead to lower concentrations of amino-groups with lower specificity but lower surface damaging. Therefore, this simple surface treatment seems to be an effective, low cost method for the production of uniform surface modification with amino-groups that can subsequently be used to graft various chemical functionalities used for biomaterial compatibility.

1837. Sauer, B.B., and N.V. Dipaolo, “Surface tension and dynamic wetting on polymers using the Wilhelmy method: Applications to high molecular weights and elevated temperatures,” J. Colloid and Interface Science, 144, 527-537, (Jul 1991).

311. Savolainen, A., J. Kuusipalo, and H. Karhuketo, “Extrusion coating: corona after-treatment of LDPE coating,” TAPPI J., 73, 133-139, (Jul 1990).

557. Savolainen, A., J. Kuusipalo, and H. Karhuketo, “Optimization of corona and flame pretreatment in multilayer coating,” in 1991 Extrusion Coating Short Course (Dusselfdorf), 333-340, TAPPI Press, 1991.

312. Sayka, A., and J.G. Eberhart, “The effect of plasma treatment on the wettability of substrate materials,” Solid State Technology, 32, 69-70, (May 1989).

2718. Schafer, J., T. Hofmann, J. Holtmannspotter, M. Frauenhofer, J. von Czarnecki, and H.-J. Gudladt, “Atmospheric-pressure plasma treatment of polyamide 6 composites for bonding with polyurethane,” J. Adhesion Science and Technology, 29, 1807-1819, (2015).

An atmospheric-pressure plasma jet (APPJ)-based surface treatment process was investigated for the structural (τB > 15 MPa) adhesive bonding of polyamide 6 (PA6) composites. The treated surfaces were examined by contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). Additionally, the shear strengths of single lap specimens were determined as a function of different plasma intensities and polyurethane adhesives. Our results show that APPJ leads to an increase of the surface free energy, oxygen concentration, and number of functional groups. Furthermore, the topography of the surface was significantly modified by exposure to APPJ. AFM measurements show that special attention has to be paid to the intensity of the plasma treatment to avoid melting and flattening of the PA6 surface on the nanometer scale. With optimized multiple APPJ treatments, lap shear strength of 20 MPa was achieved for the first time for this material system, allowing the material system to be employed in future automobile applications.

1281. Schleising, E., “Corona discharge treatment,” FlexoTech, 13, 26, (1997).

314. Schmidt, J.J., J.A. Gardella Jr., J.H. Magill, and R.L. Chin, “Surface spectroscopic studies of polymer surfaces and interfaces, II. Poly(tetramethyl-P-silphenylenesiloxane/poly(dimethylsiloxane) block copolymers,” Polymer, 28, 1462-1466, (1987).

313. Schmidt, J.J., J.A. Gardella, Jr., and L. Salvati Jr., “Surface studies of polymer blends, II. An ESCA and IR study of poly(methylmethacrylate)/poly(vinyl chloride) homopolymer blends,” Macromolecules, 22, 4489-4495, (1989).

315. Schoff, C.K., “Wettability phenomena of coatings,” in Modern Approaches to Wettability: Theory and Applications, Schrader, M.E., and G.I. Loeb, eds., 375-395, Plenum Press, Oct 1992.

1116. Schoff, C.K., “Coatings clinic: Wetting and wettability,” JCT CoatingsTech, 1, 108, (Oct 2004).

1167. Schoff, C.K., “Coatings clinic: Surface tension and surface energy,” JCT CoatingsTech, 3, 72, (Feb 2006).

2154. Schoff, C.K., “Coatings clinic: Interfaces and migration,” JCT CoatingsTech, 6, 48, (May 2009).

2646. Schoff, C.K., “Application defects,” CoatingsTech, 13, 32-39, (Apr 2016).

1916. Scholberg, H.M., R.A. Guenther, and R.I. Coon, “Surface chemistry of fluorocarbons and their derivatives,” J. Physical Chemistry, 57, 923-925, (1953).

316. Schonhorn, H., “Theoretical relationship between surface tension and cohesive energy density,” J. Chemical Physics, 43, 2041-2043, (1965).

321. Schonhorn, H., “Heterogeneous nucleation of polymer melts on high-energy substrates, II. Effect of substrate on morphology and wettability,” Macromolecules, 1, 145-151, (1968).

917. Schonhorn, H., “Surface modification of polymers for adhesive bonding,” in Polymer Surfaces, Clark, D.T., and W.J. Feast, eds., 213-233, John Wiley & Sons, 1978.

1835. Schonhorn, H., “Dependence of contact angles on temperature: Polar liquids vs. polypropylene,” J. Physical Chemistry, 70, 4086-4087, (Dec 1966).

1841. Schonhorn, H., “Dependence of contact angles on temperature: Polar liquids on polyethylene,” Nature, 210, 896-897, (1966).

685. Schonhorn, H., F.W. Ryan, and R.H. Hansen, “Surface treatment of polypropylene for adhesive bonding,” J. Adhesion, 2, 93-99, (Apr 1970).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->