Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 52 of 76, ordered by
 

1821. Ray, B.R., J.R. Anderson, and J.J. Scholz, “Wetting of polymer surfaces I: Contact angles of liquids on starch, amylose, amylopectin, cellulose, and polyvinyl alcohol,” J. Physical Chemistry, 62, 1220-1227, (1958).

2788. Rebros, M., P.D. Fleming, and M.K. Joyce, “UV-insk, substrates and wetting,” in 2006 Coating & Graphic Arts Conference, TAPPI Press, 2006.

851. Reed, N.M., and J.C. Vickerman, “The application of static secondary ion mass spectrometry (SIMS) to the surface analysis of polymer materials,” in Surface Characterization of Advanced Polymers, Sabbatini, L., and P.G. Zambonin, eds., 83-162, VCH, Jul 1993.

918. Reese, D.E., “The challenge of printing plastic package films,” Flexo, 18, 14-27, (Mar 1993).

1820. Reichert, W.M., F.E. Filisko, and S.A. Barenberg, “Polyphosphazenes: Effect of molecular motions on thrombogenesis,” J. Biomedical Materials Research, 16, 301-312, (1982).

2669. Reisig, S., “Comparative study between pulsed-DC and RF plasma pre-treatment of polymer web,” http://flexpack.info/laminating/comparative-study-between-pulsed-DC-and..., Jan 2017.

303. Reneker, D.H., and L.H. Bolz, “Effect of atomic oxygen on the surface morphology of polyethylene,” J. Macromolecular Science, A10, 599-608, (1976).

1465. Rengasamy, R.S., “Wetting phenomena in fibrous materials,” in Thermal and Moisture Transport in Fibrous Materials, Pan, N., and P. Gibson, eds., 156-187, Woodhead Publishing, Nov 2006.

902. Rentzhog, M., and A. Fogden, “Rheology and surface tension of water-based flexographic inks and implications for wetting of PE-coated board,” Nordic Pulp & Paper Research J., 20, 399-409, (2005).

This study systematically characterises a matrix of water-based flexographic inks with respect to their rheology, surface tension and wetting of liquid packaging board, to provide a basis for interpretation and prediction of their printing performance. For all pigment and acrylate polymer vehicles and mixing proportions the inks were shown to be shear thinning and thixotropic, with plastic viscosity, yield stress and storage and loss moduli increasing strongly with content of solution polymer (at comparable solids contents). The solution polymer decreases the static surface tension of the inks, but generally leads to an increase in their equilibrium drop contact angle on the polyethylene- (PE-) coated board due to increase in the ink-board interfacial energy. The solution polymer also decreases the drop spreading rate, and a simple model is tested to express the spreading dynamics in terms of equilibrium contact angle and a rate parameter given by the effective ratio of surface tension to viscosity.

2017. Rentzhog, M., and A. Fogden, “Print quality and resistance for water-based flexography on polymer-coated boards: Dependence of ink formulation and substrate pretreatment,” Progress in Organic Coatings, 57, 183-194, (Nov 2006).

The performance of water-based acrylic flexographic inks laboratory printed on three different polymer-coated boards, namely coated with LDPE, OPP and PP, have been analysed and interpreted. The print quality and resistance properties obtained were related to varying ink formulation, in particular choice of emulsion polymer and presence of silicone additive in the vehicle, as well as varying levels of corona pretreatment. Print mottle and adhesion were worst on PP, while wet (water) rub and scratch resistance were worst on OPP and PE, respectively. However, these properties could be greatly influenced by the ink formulation, more so than corona level. In general addition of silicone improved scratch resistance, due to reduction in polar energy component of the print surface, but at the expense of worsened wet rub resistance. The emulsion polymer giving best resistance performance was generally found to give poorest optical properties, presumably due to more limited resolubility on press.

2005. Rhee, S.K., “Surface tension of low-energy solids,” J. Colloid and Interface Science, 44, 173-174, (Jul 1973).

1984. Richards, S., “The effects of surface treatment on heat seal and hot tack,” Presented at TAPPI International Flexible Packaging & Extrusion Division Conference, Apr 2018.

551. Rideal, E.K., An Introduction to Surface Chemistry, 2nd Ed., Cambridge University Press, 1930.

624. Rigali, L., and W. Moffat, “Gas plasma: A dry process for cleaning and surface treatment,” in Handbook for Critical Cleaning, Kanegsberg, B., and E. Kanegsberg, eds., 337-342, CRC Press, Dec 2000.

808. Ringenbach, A., Y. Jugnet, and T.M. Duc, “Interfacial chemistry in Al and Cu metallization of untreated and plasma treated polyethylene and polyethylene terephthalate,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 101-120, VSP, May 1996.

1544. Ristey, W.J., et al, “Degradation and surface oxidation of PE...,” in TAPPI 1978 Conference Proceedings, 267+, TAPPI Press, 1978.

2997. Riyanto, E., “Surface treatment of polyimide using atmospheric pressure dielectric barrier discharge plasma,” ScienceAsia, 46, 444-449, (2020).

In this study, polyimide was treated by atmospheric pressure dielectric barrier discharge plasma using a helium and/or helium-oxygen mixture gasses. The polyimide was placed between copper electrodes with dielectric material installed on the cathode electrode. To investigate the surface treatment, the plasmas as a function of power, treatment time, and plasma gasses were introduced on the polyimide substrate. The experimental results show that the polyimide treated by dielectric barrier discharge plasma increases the wetting property. This property can be attributed to the surface roughness and the water compatible functional groups. The roughness increases by helium plasma treatment and can be further improved by increasing plasma power or the presence of oxygen in the helium-oxygen mixture plasma. On the other hand, the plasma surface treatment led to formation of oxygen related functional groups of -C=O and -OH.

2928. Roberts, R., “Surface energy measurements for development and control of surface treatment options,” Plastics Decorating, 32-37, (Oct 2022).

2822. Robinson, K., “Static control for corona treaters,” PFFC, 25, 14-18, (Oct 2020).

874. Robinson, P.J., Decorating and Coating of Plastics (Rapra Review Report 65), Rapra, May 1993.

1338. Rodriguez, J.M., “Mechanisms of paper and board wetting,” in The Sizing of Paper, 3rd Ed., Gess, J.M., and J.M. Rodriguez, eds., 9-25, TAPPI Press, Sep 2005.

2526. Rodriguez-Santiago, V., A.A. Bujanda, B.E. Stein, and D.D. Pappas, “Atmospheric plasma processing of polymers in helium-water vapor dielectric barrier discharges,” Plasma Processes and Polymers, 8, 631-639, (Jul 2011).

In this study, the surfaces of ultrahigh molecular weight polyethylene (UHMWPE), poly(ethylene terephthalate) (PET), and polytetrafluoroethylene (PTFE) films were treated with a helium-water vapor plasma at atmospheric pressure and room temperature. Surface changes related to hydrophilicity, chemical funtionalization, surface energy, and adhesive strength after plasma treatment were investigated using water contact angle (WCA) measurements, X-ray photoelectron spectroscopy (XPS), and mechanical T-peel tests. Results indicate increased surface energy accompanied with enhanced hydrophilicity. WCA decreased by 36, 50, and 16% for UHMWPE, PET, and PTFE, respectively, after only 0.4 s treatment. For UHMWPE, it is shown that the surface functionalization can be tailored depending on the plasma exposure time. Aging studies performed for these three polymers show the stability of the surface groups as indicated by a small increase in WCA values of plasma treated samples which can be attributed to cross-linking of surface and subsurface polymer chains. XPS analysis of the surfaces show increased oxygen content via the formation of polar, hydroxyl-based functional groups. Furthermore, major changes in the polymer structure of PET are observed, possibly due to the opening of the aromatic rings caused by the plasma energetic species. T-peel test results show an 8, 7.5, and 400-fold increase in peel strength for UHMWPE, PET, and PTFE, respectively. Most importantly, it is shown that water-vapor based plasmas can be a promising, “green,” inexpensive route to promote the surface activation of polymers.

2493. Rodriguez-Santiago, V., A.A. Bujanda, K.E. Strawhecker, and D.D. Pappas, “The effect of helium-air, helium-water vapor, helium-oxygen, and helium-nitrogen atmospheric pressure plasmas on the adhesion strength of polyethylene,” in Atmospheric Pressure Plasma Treatment of Polymers, Thomas, M., and K.L. Mittal, eds., 299-314, Scrivener, 2013.

1838. Roe, R.-J., “Surface tension of polymer liquids,” J. Physical Chemistry, 72, 2013-2017, (Jun 1968).

1839. Roe, R.-J., “Parachor and surface tension of amorphous polymers (letter),” J. Physical Chemistry, 69, 2809-2810, (1965).

877. Rolando, T.E., Flexible Packaging - Adhesives, Coatings and Processes (Rapra Review Report 122), Rapra, Aug 2000.

890. Romand, M., M. Charbonnier, and Y. Goepfert, “Plasma and VUV pretreatments of polymer surfaces for adhesion enhancement of electrolessly deposited Ni or Cu films,” in Metallization of Polymers 2, Sacher, E., ed., 191-206, Plenum Publishers, Oct 2002.

1856. Romero-Sanchez, M.D., M.M. Pastor-Blas, J.M. Martin-Martinez, and M.J. Walzak, “UV treatment of synthetic styrene-butadiene-styrene rubber,” J. Adhesion Science and Technology, 17, 25-45, (2003).

1379. Romero-Sanchez, M.D., M.M. Pastor-Blas, and J.M. Martn-Martinez, “Treatment of a styrene-butadiene-styrene rubber with corona discharge to improve the adhesion to polyurethane adhesive,” Intl. J. Adhesion and Adhesives, 23, 49-57, (2003).

1845. Romero-Sanchez, M.D., and J.M. Martin-Martinez, “UV-ozone surface treatment of SBS rubbers containing fillers: Influence of the filler nature on the extent of surface modification and adhesion,” J. Adhesion Science and Technology, 22, 147-168, (2008).

SBS rubbers containing different loadings of calcium carbonate and/or silica fillers were surface treated with UV-ozone to improve their adhesion to polyurethane adhesive. The surface modifications produced on the treated filled SBS rubbers have been analyzed by contact angle measurements, ATR-IR spectroscopy, XPS and SEM. The adhesion properties have been evaluated by T-peel strength tests on treated filled SBS rubber/polyurethane adhesive/leather joints. The UV-ozone treatment improved the wettability of all rubber surfaces, and chemical (oxidation) and morphological modifications (roughness, ablation, surface melting) were produced. The increase in the time of UV-ozone treatment to 30 min led to surface cleaning (removal of silicon-based moieties) due to ablation and/or melting of rubber layers and also incorporation of more oxidized moieties was produced. Although chemical modifications were produced earlier in an unfilled rubber for short time of treatment with UV-ozone, they were more noticeable in filled rubbers for extended length of treatment, mainly for S6S and S6T rubbers containing silica filler. The oxidation process seemed to be inhibited for S6C and S6T rubbers (containing calcium carbonate filler). On the other hand, the S6S rubber containing silica filler and the lowest filler loading showed the higher extent of modification as a consequence of the UV-ozone treatment. The UV-ozone increased the joint strength in all joints, more noticeably in the rubbers containing silica filler, in agreement with the greater extents of chemical and morphological modifications produced by the treatment in these rubbers. Finally, the nature and content of fillers determined the extent of surface modification and adhesion of SBS rubber treated with UV-ozone.

1996. Ronay, M., “Determination of the dynamic surface tension of inks from the capillary instability of jets,” J. Colloid and Interface Science, 66, 55-67, (Aug 1978).

2871. Rong, X., and M. Keif, “A study of PLA printability with flexography,” Presented at 59th Annual Technical Association of Graphic Arts Technical Conference Proceedings, Mar 2007.

2159. Roobol, N.R., “Preparing plastics for painting,” http://www.sabreen.com/prep_painting.htm,

1778. Rosano, H.L., W. Gerbacia, M.E. Feinstein, and J.W. Swaine, Jr., “Determination of the critical surface tension using an automatic wetting balance,” J. Colloid and Interface Science, 36, 298-307, (Jul 1971).

1520. Rosato, D., “Plasma bonding polymer to polymer,” Molding Views, (Oct 2006).

1461. Rose, P.W., and E. Liston, “Gas plasma technology and surface treatment of polymers prior to adhesive bonding,” in Antec '85, 685-688, Society of Plastics Engineers, May 1985.

305. Rosenthal, L.A., “Corona discharge electrode concepts in film surface treatment,” in ANTEC 1980 Proceedings, 671-674, Society of Plastics Engineers, 1980.

2351. Rosenthal, L.A., “Treating of plastic surfaces,” U.S. Patent 3196270, Jul 1965.

2368. Rosenthal, L.A., “Method for the surface treatment of thermoplastic materials,” U.S. Patent 4145386, Mar 1979.

304. Rosenthal, L.A., and D.A. Davis, “Electrical characterization of a corona discharge for surface treatment,” IEEE Transactions on Industry Applications, 1A-11, 328-334, (May 1975).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->

 Build ID built-Jan 3 2011-13:54:18
 Page ID 4254073171
 MGI Version 3.2.3
 MGI Region Path /
 Virtual Host Name dev.accudynetest.com
 Parameter Count 0
 Parameter List 
 Tag Body 
 Page Variable Count 21
 Page Variable List mgiSBShippingTotal="0.00"
 bibVar_Page="52"
 tIndex="8"
 bibVar_ResultCount="3022"
 prevURL="bibliography2.html?pageID=51&bibsort=author"
 nextURL="bibliography2.html?pageID=53&bibsort=author"
 bibsort="author"
 bibVar_LastPage="76"
 token=""
 mgiSBSubtotal="0.00"
 bibVar_FirstIndex="2041"
 bibVar_PrevPage="51"
 textURL="bibliography2.html?pageID=76&bibsort=author"
 bibVar_NextPage="53"
 searchstring="NOT auth='' ORDER BY auth"
 mgiSBTotal="0.00"
 numberURL="| <a href="bibliography2.html?pageID=1&bibsort=author" class="numURL">1</a> | <a href="bibliography2.html?pageID=2&bibsort=author" class="numURL">2</a> | <a href="bibliography2.html?pageID=3&bibsort=author" class="numURL">3</a> | <a href="bibliography2.html?pageID=4&bibsort=author" class="numURL">4</a> | <a href="bibliography2.html?pageID=5&bibsort=author" class="numURL">5</a> | <a href="bibliography2.html?pageID=6&bibsort=author" class="numURL">6</a> | <a href="bibliography2.html?pageID=7&bibsort=author" class="numURL">7</a> | <a href="bibliography2.html?pageID=8&bibsort=author" class="numURL">8</a> | <a href="bibliography2.html?pageID=9&bibsort=author" class="numURL">9</a> | <a href="bibliography2.html?pageID=10&bibsort=author" class="numURL">10</a> | <a href="bibliography2.html?pageID=11&bibsort=author" class="numURL">11</a> | <a href="bibliography2.html?pageID=12&bibsort=author" class="numURL">12</a> | <a href="bibliography2.html?pageID=13&bibsort=author" class="numURL">13</a> | <a href="bibliography2.html?pageID=14&bibsort=author" class="numURL">14</a> | <a href="bibliography2.html?pageID=15&bibsort=author" class="numURL">15</a> | <a href="bibliography2.html?pageID=16&bibsort=author" class="numURL">16</a> | <a href="bibliography2.html?pageID=17&bibsort=author" class="numURL">17</a> | <a href="bibliography2.html?pageID=18&bibsort=author" class="numURL">18</a> | <a href="bibliography2.html?pageID=19&bibsort=author" class="numURL">19</a> | <a href="bibliography2.html?pageID=20&bibsort=author" class="numURL">20</a> | <a href="bibliography2.html?pageID=21&bibsort=author" class="numURL">21</a> | <a href="bibliography2.html?pageID=22&bibsort=author" class="numURL">22</a> | <a href="bibliography2.html?pageID=23&bibsort=author" class="numURL">23</a> | <a href="bibliography2.html?pageID=24&bibsort=author" class="numURL">24</a> | <a href="bibliography2.html?pageID=25&bibsort=author" class="numURL">25</a> | <a href="bibliography2.html?pageID=26&bibsort=author" class="numURL">26</a> | <a href="bibliography2.html?pageID=27&bibsort=author" class="numURL">27</a> | <a href="bibliography2.html?pageID=28&bibsort=author" class="numURL">28</a> | <a href="bibliography2.html?pageID=29&bibsort=author" class="numURL">29</a> | <a href="bibliography2.html?pageID=30&bibsort=author" class="numURL">30</a> | <a href="bibliography2.html?pageID=31&bibsort=author" class="numURL">31</a> | <a href="bibliography2.html?pageID=32&bibsort=author" class="numURL">32</a> | <a href="bibliography2.html?pageID=33&bibsort=author" class="numURL">33</a> | <a href="bibliography2.html?pageID=34&bibsort=author" class="numURL">34</a> | <a href="bibliography2.html?pageID=35&bibsort=author" class="numURL">35</a> | <a href="bibliography2.html?pageID=36&bibsort=author" class="numURL">36</a> | <a href="bibliography2.html?pageID=37&bibsort=author" class="numURL">37</a> | <a href="bibliography2.html?pageID=38&bibsort=author" class="numURL">38</a> | <a href="bibliography2.html?pageID=39&bibsort=author" class="numURL">39</a> | <a href="bibliography2.html?pageID=40&bibsort=author" class="numURL">40</a> | <a href="bibliography2.html?pageID=41&bibsort=author" class="numURL">41</a> | <a href="bibliography2.html?pageID=42&bibsort=author" class="numURL">42</a> | <a href="bibliography2.html?pageID=43&bibsort=author" class="numURL">43</a> | <a href="bibliography2.html?pageID=44&bibsort=author" class="numURL">44</a> | <a href="bibliography2.html?pageID=45&bibsort=author" class="numURL">45</a> | <a href="bibliography2.html?pageID=46&bibsort=author" class="numURL">46</a> | <a href="bibliography2.html?pageID=47&bibsort=author" class="numURL">47</a> | <a href="bibliography2.html?pageID=48&bibsort=author" class="numURL">48</a> | <a href="bibliography2.html?pageID=49&bibsort=author" class="numURL">49</a> | <a href="bibliography2.html?pageID=50&bibsort=author" class="numURL">50</a> | <a href="bibliography2.html?pageID=51&bibsort=author" class="numURL">51</a> | 52 | <a href="bibliography2.html?pageID=53&bibsort=author" class="numURL">53</a> | <a href="bibliography2.html?pageID=54&bibsort=author" class="numURL">54</a> | <a href="bibliography2.html?pageID=55&bibsort=author" class="numURL">55</a> | <a href="bibliography2.html?pageID=56&bibsort=author" class="numURL">56</a> | <a href="bibliography2.html?pageID=57&bibsort=author" class="numURL">57</a> | <a href="bibliography2.html?pageID=58&bibsort=author" class="numURL">58</a> | <a href="bibliography2.html?pageID=59&bibsort=author" class="numURL">59</a> | <a href="bibliography2.html?pageID=60&bibsort=author" class="numURL">60</a> | <a href="bibliography2.html?pageID=61&bibsort=author" class="numURL">61</a> | <a href="bibliography2.html?pageID=62&bibsort=author" class="numURL">62</a> | <a href="bibliography2.html?pageID=63&bibsort=author" class="numURL">63</a> | <a href="bibliography2.html?pageID=64&bibsort=author" class="numURL">64</a> | <a href="bibliography2.html?pageID=65&bibsort=author" class="numURL">65</a> | <a href="bibliography2.html?pageID=66&bibsort=author" class="numURL">66</a> | <a href="bibliography2.html?pageID=67&bibsort=author" class="numURL">67</a> | <a href="bibliography2.html?pageID=68&bibsort=author" class="numURL">68</a> | <a href="bibliography2.html?pageID=69&bibsort=author" class="numURL">69</a> | <a href="bibliography2.html?pageID=70&bibsort=author" class="numURL">70</a> | <a href="bibliography2.html?pageID=71&bibsort=author" class="numURL">71</a> | <a href="bibliography2.html?pageID=72&bibsort=author" class="numURL">72</a> | <a href="bibliography2.html?pageID=73&bibsort=author" class="numURL">73</a> | <a href="bibliography2.html?pageID=74&bibsort=author" class="numURL">74</a> | <a href="bibliography2.html?pageID=75&bibsort=author" class="numURL">75</a> | <a href="bibliography2.html?pageID=76&bibsort=author" class="numURL">76</a>"
 page="52"
 iatatest=""
 bibVar_LastIndex="2080"
 searchString1="token = ''"
 HTML POST Argument Count 0
 HTML POST Argument List 
 URL Path Argument Count 2
 URL Path Argument List bibsort="author"
 pageID="52"
 CGI AUTH_TYPE 
 CGI CONTENT_LENGTH 
 CGI CONTENT_TYPE 
 CGI GATEWAY_INTERFACE CGI/1.1
 CGI HTTP_ACCEPT */*
 CGI HTTP_REFERER 
 CGI HTTP_USER_AGENT Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
 CGI PATH_INFO 
 CGI QUERY_STRING bibsort=author&pageID=52
 CGI REMOTE_ADDR 3.135.220.154
 CGI REMOTE_HOST 
 CGI REMOTE_IDENT 
 CGI REMOTE_USER 
 CGI REQUEST_METHOD GET
 CGI SCRIPT_NAME /bibliography2.html
 CGI SERVER_PORT 80
 CGI SERVER_PROTOCOL 
 CGI SERVER_NAME dev.accudynetest.com
 CGI SERVER_SOFTWARE MGI Apache