Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 47 of 76, ordered by
 

541. Occhiello, E., M. Morra, G. Morini, and F. Garbassi, “Effect of oxygen plasma treatments on polypropylene - epoxy interfacial strength,” in Interfaces Between Polymers, Metals, and Ceramics, Ishida, H., 199-204, Materials Research Society, 1989.

266. Occhiello, E., M. Morra, P. Cinquina, and F. Garbassi, “Hydrophobic recovery of oxygen-plasma-treated polystyrene,” Polymer, 33, 3007-3015, (1992).

976. Ogawa, T., H. Mukai, and S. Osawa, “Effects of functional groups and surface roughness on interfacial shear strength in ultrahigh molecular weight polyethylene fiber/polyethylene system,” J. Applied Polymer Science, 71, 243-249, (Jan 1999).

1280. Ogawa, T., H. Mukai, and S. Osawa, “Improvement of the mechanical properties of an ultrahigh molecular weight polyethylene fiber/epoxy composite by corona-discharge treatment,” J. Applied Polymer Science, 79, 1162-1168, (Feb 2001).

1011. Ogawa, T., T. Sato, and S. Ogawa, “Charge density distribution of functional groups and their contribution to adhesion properties,” in Adhesion '99, 149-154, Institute of Materials, 1999.

267. Ogita, T., A.N. Ponomarev, S. Nishimoto, and T. Kagiya, “Surface structure of low-density polyethylene film exposed to air plasma,” J. Macromolecular Science, A22, 1135-1150, (1985).

2020. Oh, E., and P.E. Luner, “Surface free energy of ethylcellulose films and the influence of plasticizers,” Intl. J. Pharmaceutics, 188, 203-219, (Oct 1999).

1910. Oh, T.S., L.P. Buchwalter, and J. Kim, “Adhesion of polyimides to ceramic substrates: Role of acid-base interactions,” J. Adhesion Science and Technology, 4, 303-317, (1990) (also in Acid-Base Interactions: Relevance to Adhesion Science and Technology, K.L. Mittal and H.R. Anderson Jr., eds., p. 287-302, VSP, Nov 1991).

268. Ohsawa, T., and T. Ozaki, “New method for determination of surface tension of liquids,” Review of Scientific Instrumentation, 52, 590-593, (1981).

1412. Okazaki, S., and M. Kogoma, “Development of atmospheric pressure flow discharge plasma and its application on a surface with curvature,” J. Photopolymer Science and Technology, 6, 339-342, (1993).

269. Olafsen, K., A. Stori, and D.A. Tellefsen, “Grafting of acrylic acid onto corona-treated polyethylene surfaces,” J. Applied Polymer Science, 46, 1673-1676, (1992).

270. Olivier, J.F., and S.G. Mason, “Microspreading studies on rough surfaces by scanning electron microscopy,” J. Colloid and Interface Science, 60, 480-487, (1977).

1549. Oller, S., “Printing on plastic,” American Printer, (Nov 2002).

2771. Olsen, D.A., and A.J. Osteraas, “The critical surface tension of glass,” J. Physical Chemistry, 68, 2730-2732, (1964).

1811. Omenyi, S.N., A.W. Neumann, and C.J. can Oss, “Attraction and repulsion of solid particles by solidification fronts I: Thermodynamic effects,” J. Applied Physics, 52, 789, (Feb 1981).

1812. Omenyi, S.N., R.P. Smith, and A.W. Neumann, “Determination of solid/melt interfacial tensions and of contact angles of small particles from the critical velocity of engulfing,” J. Colloid and Interface Science, 75, 117-125, (May 1980).

272. Onyiriuka, E.C., “The effects of high-energy radiation on the surface chemistry of polystyrene: a mechanistic study,” J. Applied Polymer Science, 47, 2187-2194, (1993).

1880. Onyiriuka, E.C., “Electron beam surface modification of polystyrene used for cell cultures,” J. Adhesion Science and Technology, 8, 1-9, (1994).

271. Onyiriuka, E.C., L.S. Hersh, and W. Hertl, “Solubilization of corona discharge- and plasma-treated polystyrene,” J. Colloid and Interface Science, 144, 98-102, (1991).

2088. Onyiriuka, E.C., L.S. Hersh, and W. Hertl, “Surface modification of polystyrene by gamma-radiation,” Applied Spectroscopy, 44, 808-811, (1990).

273. Opad, J.S., “The use and application of corona treaters,” Flexo, 16, 39-41, (Oct 1991).

274. Opad, J.S., “The surface tension phenomenon,” Flexo, 22, 102-103, (Mar 1997).

275. Opad, J.S., “The theory of surface tension,” Flexible Packaging, 1, 32-33, (Jun 1999).

276. Opad, J.S., “Choosing the correct dielectric in corona treating,” Converting, 17, 88-90, (Dec 1999).

2556. Oravcova, A., and I. Hudec, “The influence of atmospheric pressure plasma treatment on surface properties of polypropylene films,” Acta Chimica Solvaca, 3, 57-62, (2010).

In this work the influence of the atmospheric pressure plasma treatment on the surface properties of polypropylene (PP) films was investigated. The film samples were modified by atmospheric pressure plasma treatment by diffuse coplanar surface barrier discharge (DCSBD) using ambient air as working gas. The contact angle measurement, the test pen method, atomic force microscopy (AFM) and attenuated total reflection technique Fourier transformed infrared spectroscopy (ATR-FTIR) were applied to analyze the changes of the surface of the polymer film. In all experiments, the contact angle of the treated polypropylene samples decreased and the surface energy of the samples increased in comparison with the plasma untreated samples. The proper surface energy for printing using solvent-based inks was detected by all the samples. There were not observed any significant changes in mechanical properties of the films after plasma treatment by measuring their tear parameters.

794. Ortiz-Magan, A.B., M. Pastor-Blas, T.P. Ferrandiz-Gomez, and J.M. Martin-Martine, “Treatment of vulcanized SBR rubber with low-pressure gas plasma using oxygen-nitrogen mixtures,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 2, Mittal, K.L., ed., 91-120, VSP, Dec 2000.

1125. Ortiz-Magan, A.B., M.M. Pastor-Blas, and J.M. Martin-Martinez, “Different performance of Ar, O2, and CO2 RF plasmas in the adhesion of thermoplastic rubber to polyurethane adhesive,” in Plasma Processes and Polymers, d'Agostino, R., P. Favia, C. Oehr, and M.R. Wertheimer, eds., 177-192, Wiley-VCH, 2005.

2362. Osman, M.S., “Electrode for sheet material surface,” U.S. Patent 3777164, Dec 1973.

2400. Ostapchenko, G.J., “Polyethylene terephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor,” U.S. Patent 5721023, Feb 1998.

1241. Osterberg, M., and P.M. Claesson, “Interactions between cellulose surfaces: Effect of solution pH,” J. Adhesion Science and Technology, 14, 603-618, (2000).

2363. Osterholtz, F.D., “Low energy electron beam treatment of polymeric films, and apparatus therefor,” U.S. Patent 3846521, Nov 1974.

665. Owen, M.J., “Surface properties of silicone release coatings,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, van Ooij, W.J., and H.R. Anderson Jr., eds., 255-263, VSP, 1998.

954. Owen, M.J., “Surface energy,” in Comprehensive Desk Reference of Polymer Characterization and Analysis, Brady, R.F. Jr., ed., 361-374, Oxford University Press, 2003.

650. Owen, M.J., T.M. Gentle, T. Orbeck, and D.E. Williams, “Dynamic wettability of hydrophobic polymers,” in Polymer Surface Dynamics, Andrade, J.D., ed., 101-110, Plenum Press, 1988.

1905. Owen, M.J., and P.J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhesion Science and Technology, 8, 1063-1075, (1994) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 3-16, VSP, May 1996).

278. Owens, D.K., “Mechanism of corona-induced self-adhesion of polyethylene film,” J. Applied Polymer Science, 19, 265-271, (1975).

279. Owens, D.K., “The mechanism of corona and ultraviolet light-induced self-adhesion of poly(ethylene terephthalate) film,” J. Applied Polymer Science, 19, 3315-3326, (1975).

277. Owens, D.K., and R.C. Wendt, “Estimation of the surface free energy of polymers,” J. Applied Polymer Science, 13, 1741-1747, (1969).

1242. Ozdemir, M., C.U. Yurteri, and H. Sadikoglu, “Physical polymer surface modification methods and applications in food packaging polymers,” Critical Reviews in Food Science and Nutrition, 39, 457-477, (Jul 1999).

1675. Pachuta, S.L., and M. Strobel, “Time-of-flight SIMS analysis of polypropylene films modified by flame treatments using isotopically labeled methane fuel,” J. Adhesion Science and Technology, 21, 795-818, (2007).

The surface of polypropylene (PP) film was oxidized by exposure to a flame fueled by isotopically labeled methane (CD4). The isotopic sensitivity of static secondary ion mass spectrometry (SIMS) was then used to gain new insights into the mechanism of flame treatment. SIMS analysis indicated that much of the oxidation of PP occurring in fuel-lean flames is not deuterated, while for PP treated in fuel-rich flames, some of the affixed oxygen is deuterated. These observations imply that O2 is the primary source of affixed surface oxygen in fuel-lean flame treatments, but that OH may be a significant source of affixed oxygen in fuel-rich flame treatments. Hydroxyl radicals are primarily responsible for hydrogen abstraction in fuel-lean flames, while H is the primary active gasphase species in fuel-rich flames. SIMS also detected trace quantities of oxidized nitrogen groups affixed to the flame-treated PP.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->