ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 44 of 76, ordered by
2436. Mount, E.M. III, “Substrate secrets: Maintaining the surface energy of PET films,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4269/, Jun 2012.
2442. Mount, E.M. III, “Substrate secrets: Why are PP and PE not compatible?,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4266/, May 2012.
2443. Mount, E.M. III, “Substrate secrets: Solubility parameters patent reference,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4357/, Jun 2012.
2472. Mount, E.M. III, “Substrate secrets: Metallized films - aluminum layer contamination in wound rolls,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4623/, Aug 2012.
2474. Mount, E.M. III, “Substrate secrets: Surface testing of a delamination,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/6008/, Sep 2013.
2598. Mount, E.M. III, “Help for lamination bonding,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7084/, Jul 2014.
2600. Mount, E.M. III, “Substrate secrets: How to recognize a corona-treated or plain PET film surface after metallization,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/6965/, Jul 2014.
2601. Mount, E.M. III, “Substrate secrets: Extrusion-coating of woven HDPE cloth,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7219/, Sep 2014.
2603. Mount, E.M. III, “Substrate secrets: Treatment decay in metallized films - take two,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7721/treatment..., Jan 2015.
2644. Mount, E.M. III, “Adhesion loss in metallized laminations,” http://www.convertingquarterly.com/substrate-secrets/adhesion-loss-in..., May 2016.
2649. Mount, E.M. III, “Substrate secrets: How do we test for invisible variations in film surface energy?,” Converting Quarterly, 6, 14-15, (May 2016).
2688. Mount, E.M. III, “Substrate secrets: How can we optimize various substrate surfaces for proper adhesion?,” Converting Quarterly, 7, 16-17, (May 2017).
2799. Mount, E.M. III, “Substrate secrets: How do we design a substrate to have enhanced surface chemistry? Part 1,” Converting Quarterly, 9, 12, (Oct 2019) (also in http://www.convertingquarterly.com/substrates/how-do-we-design-a-substrate...).
2804. Mount, E.M. III, “How do we design a substrate to have enhanced surface chemistry? Part 2 of 2,” http://www.convertingquarterly.com/substrates/how-to-design-a-substrate-to-have-enhanced-surface-chemistry?, Feb 2020 (also in Converting Quarterly, V. 10, p. 12-13, Feb 2020).
692. Mount, E.M. III, and A.J. Benedict, “Metallisable heat-sealable, oriented polypropylene film has layer of copolyester to improve bonding to metal,” European Patent #444340, 1991.
2808. Mount, E.M. III, and J.R. Wagner Jr., “Enhanced barrier vacuum metallized films,” U.S. Patent 5981079, Nov 1999.
860. Moussaif, N., and R. Jerome, “Modification of the polycarbonate/poly(vinylidene fluoride) interface by poly(methyl methacrylate). Effect on the interfacial adhesion and interfacial tension,” in Macromolecular Symposia 139: Macromolecules at Interfaces, Kahovec, J., ed., 125-135, Wiley-VCH, Aug 1999.
1307. Moy, E., F.Y.H. Lin, Z. Policova, and A.W. Neumann, “Contact angle studies of the surface properties of covalently bonded poly-L-lysine to surfaces treated by glow-discharge,” Colloid and Polymer Science, 272, 1245-1251, (1994).
1329. Moy, E., P. Cheng, Z. Policova, S. Treppo, D. Kwok, D.R. Mack, et al, “Measurement of contact angles from the maximum diameter of non wetting drops by means of a modified axisymmetric drop shape analysis,” Colloids and Surfaces, 58, 215-227, (1991).
721. Moy, E., and A.W. Neumann, “Theoretical approaches for estimating solid-liquid interfacial tensions,” in Applied Surface Thermodynamics, Neumann, A.W., and J.K. Spelt, eds., 333-378, Marcel Dekker, Jun 1996.
1300. Moy, E., and D. Li, “Solid/fluid interfacial tensions of solid-liquid systems: Corroboration by independent approaches,” Advances in Colloid and Interface Science, 39, 257-297, (1992).
2425. Mrad, O., J. Saunier, C. Aymes-Chodur, V. Mazel, V. Rosilio, et al, “Aging of a medical device surface following cold plasma treatment: Influence of low molecular weight compounds on surface recovery,” European Polymer J., 47, 2403-2413, (2011).
The surface of medical devices is of great importance for biocompatibility. Surface properties can evolve with a material treatment, time, and storage conditions. In this work, poly(urethane) catheters sterilised by cold nitrogen plasma treatment, were subjected to air and temperature aging in order to evaluate the influence of humidity and temperature on surface recovery. The surface of catheters was analysed by contact angle measurements and XPS. Faster surface changes upon aging were observed at high temperature (45 °C) and relative humidity (90%). For the commercial poly(urethane) catheters analysed in this work, the importance of the nature and polymorphism of additives added to the polymer (lubricant, antioxidant) in the recovery process was demonstrated. Indeed, DSC and TSC showed that additive transitions (relaxation, melting…) could govern the aging process.
2716. Mui, T.S.M., L.L.G. Silva, V. Prysiazhnyi, and K.G. Kostov, “Polyurethane paint adhesion improvement on aluminum alloy treated by plasma jet and dielectric barrier discharge,” J. Adhesion Science and Technology, 30, 218-229, (2016).
The effect of atmospheric pressure plasma treatment on the adhesion between a protective coating and AA1100 alloy was investigated. Two plasma sources were used for surface modifications: atmospheric pressure plasma jet and dielectric barrier discharge. The surface roughness and water contact angle measurements were conducted in order to evaluate the changes on the aluminium surface after plasma processing. The paint coating was tested using the adhesion tape test (ASTM D3359). A significant improvement of surface wettability and adhesion was obtained after plasma treatments.
2737. Mukhopadhyay, S., and R. Fangueiro, “Physical modification of natural fibers and thermoplastic films for composites - a review,” J. Thermoplastic Composite Materials, 22, 135-162, (Mar 2009).
The article throws light on the physical methods to modify natural fibers to be used in composites. Physical methods in natural fiber processing are used to separate natural fiber bundles into individual filaments and to modify the surface structure of the fibers so as to improve the use of natural fibers in composites. Steam explosion and thermomechanical processes fall in the first category while plasma, dielectric barrier techniques and corona fall in the second. The physical treatments have also been used to modify the thermoplastic polymeric films like polyethylene and polypropylene in a bid to impart reactivity. Reviewing such developments, the areas for further research are suggested.
2163. Muller, M., and C. Oehr, “Surface tensions of polymers,” http://www.igb.fraunhofer.de/www/gf/grenzflmem/gf-physik/en/GFphys-PolymOberfl, Nov 2008.
2265. Muller. M., and C. Oehr, “Comments on 'An essay on contact angle measurement' by Strobel and Lyons,” Plasma Processes and Polymers, 8, 19-24, (Jan 2011).
The potential of contact angle measurements (CAM) as an analytical tool to characterize surface treatments or modifications is often not fully exploited. Agreeing with Strobel and Lyons, comparing contact angles is often much more reasonable than comparing deduced data like surface energies, because the latter are based on models, in turn involving the influence and knowledge of intermolecular forces at the respective interfaces. For a comprehensive picture, the measurement of contact angles itself has to be considered together with the appropriate model and the available techniques to carry out CAM. An appropriate measurement procedure will be given and a brief discussion of some models to derive free surface energy from CAM.
1488. Mullins, B.J., I. Agranovski, R.D. Braddock, and C.M. Ho, “Effect of fiber orientation on fiber wetting process,” J. Colloid and Interface Science, 269, 449-458, (2004).
The current work incorporates a microscopic study of the effect of fiber orientation on the fiber wetting process and flow of liquid droplets along filter fibers when subjected to airflow and gravity forces. Glass filter fibers in various combinations were oriented at various angles within a plane defined by the airflow direction and were supplied with distilled water in aerosol form. The behavior and flow of the liquid collected by the fibers were observed and measured using a specially developed microscope cell, detailed in the paper. The experimental results were compared to a theoretical model developed to describe the behavior. The theory and experimental results showed good agreement. The developed theory allows an optimum angle to be determined for the internal filter fiber structure in the design of wet filters. A sensitivity analysis of the model was conducted to determine the most important parameters. This will aid design of wet filtration systems such that maximal self-cleaning can be accomplished with minimal water use.
250. Munro, H.S., and D.I. McBriar, “Influence of post treatment storage on the surface chemistry of plasma oxidized polymers,” J. Coatings Technology, 60, 41-46, (Nov 1988).
812. Murahara, M., and K. Toyoda, “Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface,” in Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., ed., 213-222, VSP, May 1996.
1895. Murahara, M., and K. Toyoda, “Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface,” J. Adhesion Science and Technology, 9, 1601-1609, (1995).
1894. Murahara, M., and M. Okoshi, “Photochemical surface modification of polypropylene for adhesion enhancement by using an excimer laser,” J. Adhesion Science and Technology, 9, 1593-1599, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 223-232, VSP, May 1996).
2087. Murakami, T.N., Y. Fukushima, Y. Hirano, Y. Tokuoka, M. Takahashi, N. Kawashima, “Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment,” Colloids and Surfaces B: Biointerfaces, 29, 171-179, (Jun 2003).
2868. Muratov, I., R. Garapov, A Eframova, and A. Khasanov, “The effect of surface treatment of PET films on adhesive properties,” Key Engineering Materials, 869, 394-399, (Oct 2020).
In this work we studied the effect of surface treatment of PET films, which are widely used in food packaging, on the adhesion value of ink layers based on polyvinyl chloride. To give high barrier properties to packaging laminates, the films used in their structure are coated with a nanolayer of aluminum oxide (AlOx). However, these films have a disadvantage associated with the low adhesion of adhesive and ink layers to the AlOx nanolayer. To eliminate this disadvantage, aluminium oxide nanolayer is additionally coated with various polymer coatings. In this work we studied the effect of a polyacrylic coating applied on top of an AlOx layer on improving the adhesion of ink layers. For PET films used in food packaging, optical and surface properties are also important. In this regard, additionally we measured surface free energy, coefficient of friction, and optical properties of the studied PET films. We also highlight the relationship of contact angles of wetting and the work of adhesion for the printing ink with the measured adhesion of ink layers.
1347. Murokh, I.Y., “Atmospheric plasma surface treatment technique,” http://Tri-Star-Technologies/news/articles/atmosphericplasmasurfacetreatment.pdf, 2005.
1351. Murokh, I.Y., “In-Line Plasma Treatment of Wire Insulation Materials,” Tri-Star Technologies, 2005.
1352. Murokh, I.Y., and A.A. Kerner, “Surface charging to improve wettability,” U.S. Patent 5798146, Sep 1995.
1949. Murphy, W.J., M.W. Roberts, and J.R.H. Ross, “Contact angle studies of some low energy polymer surfaces,” J. Chemical Society, Faraday Transactions 1, 68, 1190-1199, (1972).
693. Murray, L., and P. McCarry, “Effect of test conditions and PET surface treatment on moisture barrier of multilayer metallized film structures,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.
251. Murray, M.D., and B.W. Darvell, “A protocol for contact angle measurement,” J. Physics, 23, 1150-1155, (1990).
1421. Muszynski, L., D. Baptista, and D.J. Gardner, “A simple geometrical model to predict evaporative behavior of spherical sessile droplets on impermeable surfaces,” in Contact Angle, Wettability and Adhesion, Vol. 4, Mittal, K.L., ed., 61-76, VSP, Jul 2006.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->