Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 35 of 76, ordered by
 

2450. Kwon, O.-J., S.-W. Myung, C.-S. Lee, and H.-S. Choi, “Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma,” J. Colloid and Interface Science, 295, 409-416, (Mar 2006).

In an attempt to modify the hydrophobic surface properties of polypropylene (PP) films, this study examined the optimum process parameters of atmospheric pressure plasma (APP) using Ar gas. Under optimized conditions, the effects of a mixed gas (Ar/O2) plasma treatment on the surface-free energy of a PP film were investigated as a function of the O2 content. The polar contribution of the surface-free energy of the PP film increased with increasing O2 content in the gas mixture. However, slightly more oxygen-containing polar functional groups such as CO, CO, and COO were introduced on the PP film surface by the Ar gas only rather than by the Ar/O2 gas mixture. In addition, AFM analysis showed that the Ar plasma treatment of the PP film produced the smoothest surface as a result of the relatively homogeneous etching process.

2778. LaPorte, R.J., Hydrophilic Polymer Coatings for Medical Devices, CRC Press, 1997.

207. Ladizeski, N.H., and I.M. Ward, “The adhesion behavior of high modulus polyethylene fibers following plasma and chemical treatment,” J. Materials Science, 24, 3763-3773, (1989).

724. Lahooti, S., O.I. del Rio, P. Cheng, and A.W. Neumann, “Axisymmetric drop shape analysis (ADSA),” in Applied Surface Thermodynamics, Neumann, A.W., and J.K. Spelt, eds., 441-508, Marcel Dekker, Jun 1996.

2581. Lahti, J., “Dry toner-based electrophotographic printing on extrusion coated paperboard (PhD thesis),” Tampere University of Technology, 2005.

2756. Lahti, J., “The role of surface properties in digital printing on extrusion coated paperboard,” in Proceedings of the 9th TAPPI Advanced Coating Fundamentals Symposium, TAPPI Press, 2006.

2758. Lahti, J., “The effects of corona and flame treatment II: PE-HD and PP coated papers,” in 12th TAPPI European PLACE Conference Proceedings, TAPPI Press, May 2009.

1468. Lahti, J. A. Savolainen, J.P. Rasanen, T. Suominen, and H. Huhtinen, “The role of surface modification in digital printing on polymer-coated packaging board,” Polymer Engineering and Science, 44, 2052-2060, (Nov 2004).

Digital printing is increasingly being used for package printing. One of the major techniques of digital printing is dry-toner electrophotography. This paper evaluates the printability of three different extrusion coatings used for packaging boards: low-density polyethylene (PE-LD), ethylene methyl acrylate (E/MA) and polyethylene terephthalate (PET). Extrusion coatings in general have an impervious, chemically inert, nonporous surface with low surface energies that cause them to be non-receptive to bonding with toners. The most common methods used in improving the adhesion properties of polymer coatings are different surface treatments. These increase the surface energy and also provide the polar molecular groups necessary for good bonds between the toner and polymer molecules. The polymer coatings have been modified with electrical corona discharge treatment. The effects of corona on polymer surfaces and the correlation between surface modification and print quality have been evaluated. Results show that sufficiently high surface energy and surface-charge uniformity are necessary for even print quality and toner adhesion. E/MA and PET have the required surface-energy level without the corona treatment, but PE-LD needs surface modification in order to succeed in the electrophotographic process. E/MA also has exceptional surface-charge properties compared with PET and PE-LD. Polym. Eng. Sci. 44:2052–2060, 2004. © 2004 Society of Plastics Engineers.

2336. Lahti, J., K. Eiroma, T.-M. Tenhunen, M. Pykonen, M. Toivakka, and M. Tuominen, “Atmospheric plasma treatment of plastic packaging film: Effects on surface properties and UV inkjet printability,” Presented at 13th TAPPI European PLACE Conference, 2011.

2568. Lahti, J., M. Tuominen, and J. Kuusipalo, “The influence of atmospheric plasma treatment on digital print quality of extrusion coated paper,” in 2008 PLACE Conference Proceedings, 767-778, TAPPI Press, Sep 2008.

1052. Lahti, J., T. Penttinen, J. Rasanen, and A. Savolainen, “The role of surface modification in digital printing on polymer coated packaging boards,” in 2003 PLACE Conference and the Global Hot Melt Symposium, TAPPI Press, Sep 2003 (also in Polymer Engineering and Science, V. 44, p. 2052-2060, Nov 2004).

2210. Lahti, J., and M. Tuominen, “The effects of corona and flame treatment I: PE-LD coated packaging board,” in 11th European PLACE Conference Proceedings, TAPPI Press, May 2007.

2970. Lai, J., B. Sunderland, J. Xue, et al, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Applied Surface Science, 252, 3375-3379, (Mar 2006).

Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that CDouble BondO bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

731. Laiho, E., and T. Ylanen, “Flame, corona, ozone - Do we need all pretreatments in extrusion coating?,” in Extrusion Coating Manual, 4th Ed., Bezigian, T., ed., 89-98, TAPPI Press, Feb 1999.

1648. Laiho, E., and T. Ylanen, “Flame, corona, ozone - do we need all pretreatments in extrusion coating?,” in 1997 Polymers, Laminations and Coatings Conference Proceedings, TAPPI Press, Aug 1997.

2734. Laimer, J., and H. Stori, “Recent advances in the research on non-equilibrium atmospheric pressure plasma jets,” Plasma Processes and Polymers, 4, 266-274, (2007).

Recently, there has been increased interest in using atmospheric pressure plasmas for materials processing, since these plasmas do not require expensive vacuum systems. However, APGDs face instabilities. Therefore, special plasma sources have been developed to overcome this obstacle, which make use of DC, pulsed DC and AC ranging from mains frequency to RF. Recently, the APPJ was introduced, which features an α-mode of an RF discharge between two bare metallic electrodes. Basically, three different geometric configurations have been developed. A characterization of the APPJs and their applications is presented.

2774. Lamour, G., A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, V. Prokash, et al, “Contact angle measurements using a simplified experimental setup,” J. Chemical Education, 67, 1403-1407, (Dec 2010).

A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact angle plugin detects the edge of the drop and fits its profile to a circle or an ellipse. The tangent to the triple line contact is calculated and drawn by the ImageJ software, thus, returning the value of the contact angle with acute precision on the measurement.

208. Lanauze, J.A., and D.L. Myers, “Ink adhesion on corona-treated polyethylene studied by chemical derivatization of surface functional groups,” J. Applied Polymer Science, 40, 595-611, (1990).

2282. Lander, L.M., L.M. Siewierski, W.J. Brittain, and E.A. Vogler, “A systematic comparison of contact angle methods,” Langmuir, 9, 2237-2239, (Aug 1993).

1227. Landete-Ruiz, M.D., J.A. Martinez-Diez, M.A. Rodriguez-Perez, A. Miguel, et al, “Improved adhesion of low-density polyethylene/EVA foams using different surface treatments,” J. Adhesion Science and Technology, 16, 1073-1101, (2002).

509. Lane, J.M., and D.J. Hourston, “Surface treatments of polyolefins,” Progress in Organic Coatings, 21, 269-284, (Mar 1993).

2520. Lange, J., and Y. Wyser, “Recent innovations in barrier technologies for plastic packaging - a review,” Packaging Technology and Science, 16, 149-158, (Sep 2003).

209. Langmuir, I., “Overturning and anchoring of monolayers,” Science, 87, 493-500, (1938).

510. Langmuir, I., Collected Works, Pergamon Press, 1961.

2255. Langowskia, H.-C., “Surface modification of polymer films for improved adhesion of deposited metal layers,” J. Adhesion Science and Technology, 25, 223-243, (2011).

Plasma treatment and vacuum Al deposition on films from biaxially oriented polypropylene is a multistep large scale industrial process, mainly ending up in packaging film laminates. As atmospheric plasma treatment processes suffer from lack of reproducibility, low pressure plasma treatment processes that can be operated in-line with the metal deposition are being developed. Process development is difficult, because the final packaging film laminate has to deliver optimum properties of adhesion as well as of the barrier against oxygen and water vapor permeation. As a typical production run involves tens of thousands to up to one hundred thousand square meters of film, experiments on an industrial scale are expensive, so smaller scale experimental processes are needed, which so far do not match well enough with industrial process characteristics. Moreover, bonding mechanisms between the treated substrate film and the deposited Al layer are not sufficiently understood. This paper describes the sequence in development and optimization of substrate films and plasma treatment that has been performed on an experimental as well as on an industrial scale. A sufficient correlation between experimental and industrial scales was achieved, which helps to perform development and optimization on a small scale before scaling up to industrial processes. However, improvement is still needed both in fundamental understanding of the aluminum–polypropylene interface as well as in experimental equipment and methodology.

1355. Larner, M., and S.L. Kaplan, “The challenge of plasma processing - its diversity,” Presented at ASM Materials and Processes for Medical Devices Conference, Aug 2004.

1540. Laroussi, M., K.H. Schoenbach, U. Kogelschatz, R.J. Vidmar, S. Kuo, et al, “Current applications of atmospheric pressure air plasmas,” in Non-Equilibrium Air Plasmas at Atmospheric Pressure, Becker, K.H., U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., 537-678, Institute of Physics, Nov 2004.

2274. Laroussi, M., and T. Akan, “Arc-free atmospheric pressure cold plasma jets: A review,” Plasma Processes and Polymers, 4, 777-788, (Nov 2007).

Non-thermal atmospheric pressure plasma jets/plumes are playing an increasingly important role in various plasma processing applications. This is because of their practical capability to provide plasmas that are not spatially bound or confined by electrodes. This capability is very desirable in many situations such as in biomedical applications. Various types of ‘cold’ plasma jets have, therefore, been developed to better suit specific uses. In this paper a review of the different cold plasma jets developed to date is presented. The jets are classified according to their power sources, which cover a wide frequency spectrum from DC to microwaves. Each jet is characterized by providing its operational parameters such as its electrodes system, plasma temperature, jet/plume geometrical size (length, radius), power consumption, and gas mixtures used. Applications of each jet are also briefly covered.

795. Larsson, A., and A. Ocklind, “Plasma treated polycarbonate as substrate for culture of adherent mammalian cells,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 2, Mittal, K.L., ed., 121-136, VSP, Dec 2000.

1859. Laurens, P., B. Sadras, F. Decobert, F. Arefi-Khonsari, and J. Amouroux, “Laser-induced surface modifications of poly(ether ether ketone): Influence of the excimer laser wavelength,” J. Adhesion Science and Technology, 13, 983-997, (1999).

1295. Laurens, P., M. Ould Bouali, F. Meducin, and B. Sadras, “Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold,” Applied Surface Science, 154-155, 211-216, (2000).

1128. Laurens, P., S. Petit, P. Bertrand, and F. Arefi-Khonsari, “PET surface after plasma or laser treatment:Study of the chemical modifications and adhesive properties,” in Plasma Processes and Polymers, d'Agostino, R., P. Favia, C. Oehr, and M.R. Wertheimer, eds, 253-270, Wiley-VCH, 2005.

642. Lavielle, L., “Orientation phenomena at polymer - water interfaces,” in Polymer Surface Dynamics, Andrade, J.D., ed., 45-66, Plenum Press, 1988.

1985. Lavielle, L., J. Schultz, and A. Sanfeld, “Surface properties of graft polyethylene in contact with water, II: Thermodynamic aspects,” J. Colloid and Interface Science, 106, 446-451, (Aug 1985).

211. Lavielle, L., J. Schultz, and K. Nakajima, “Acid-base surface properties of modified poly(ethylene terephthalate) films and gelatin: relationship to adhesion,” J. Applied Polymer Science, 42, 2825-2831, (1991).

210. Lavielle, L., and J. Schultz, “Surface properties of graft polyethylene in contact with water, I. Orientation phenomena,” J. Colloid and Interface Science, 106, 438-445, (1985).

2872. Law, K.-L, and H. Zhao, Surface Wetting: Characterization, Contact Angle, and Fundamentals, Springer, 2016.

2081. Lawrence, J., and L. Li, “Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd:YAG, excimer and high power diode laser radiation,” Materials Science and Engineering A, 303, 142-149, (May 2001).

980. Lawson, D., and S. Greig, “Bare roll treaters vs. covered roll treaters,” British Plastics and Rubber, 43-46, (Mar 1998).

1002. Lawson, D., and S. Greig, “Bare roll treaters versus covered roll treaters: Make the right choice,” in 1997 Polymers, Laminations and Coatings Conference Proceedings, 681-693(V2), TAPPI Press, Aug 1997.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->