ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 32 of 76, ordered by
1025. Kim, S.R., “Surface modification of polytetrafluoroethylene film by chemical etching, plasma and ion beam treatments,” J. Applied Polymer Science, 77, 1913-1920, (Aug 2000).
195. Kinbara, A., A. Kikuchi, S. Baba, and T. Abe, “Effect of plasma treatment of PTFE substrates on the adhesion characteristics of vacuum-deposited Au films,” J. Adhesion Science and Technology, 7, 457-466, (1993).
2777. Kinloch, A.J., “Interfacial contact,” in Adhesion and Adhesives: Science and Technology, 18-55, Springer, 1987.
1290. Kinloch, A.J., G.K.A. Kodokian, and J.F. Watts, “Relationships between the surface free energies and surface chemical compositions of thermoplastic fibre composites and adhesive joint strengths,” J. Materials Science Letters, 10, 815-818, (1991).
1959. Kinloch, A.J., and G.K.A. Kodokian, “On the calculation of dispersion and polar force components of the surface free energy,” J. Adhesion, 34, 41-44, (Jun 1991).
1941. Kinning, D.J., “Surface and interfacial structure of release coatings for pressure sensitive adhesives, I: Polyvinyl N-alkyl carbamates,” J. Adhesion, 60, 249-274, (Jan 1997).
2271. Kirk, S., M.A. Strobel, C.-Y. Lee, S.J. Pachuta, et al, “Fluorine plasma treatments of polypropylene films I: Surface characterization,” Plasma Processes and Polymers, 7, 107-122, (Feb 2010).
In this work, an experimental investigation of fluorine gas (F2) plasma treatment of polypropylene (PP) film reveals the evolution of PP fluorination. Surface analysis of fluorinated PP surfaces describes a surface modification process that is initially quite rapid but slows sharply as the fluorination progresses. The fluorination reaction occurs more rapidly at the PP film surface and evidence of a treatment gradient is seen in the ESCA sampling depth of 10 nm. The increasingly fluorinated surface becomes less reactive to the plasma chemistry and develops a fully fluorinated, cross-linked surface layer that eventually extends the full ESCA sampling depth.
2405. Kirk, S.M., C.S. Lyons, and R.L. Walter, “Corona treatment of polymers,” U.S. Patent 5972176, Oct 1999.
196. Kistler, S.F., “Hydrodynamics of wetting,” in Wettability, Berg, J.C., ed., 311-430, Marcel Dekker, Apr 1993.
503. Kitazaki, Y., and T. Hata, “Surface chemical criteria for optimum adhesion, II. Variability of critical surface tension and its choice,” J. Adhesion, 4, 123+, (1972).
1463. Kitazaki, Y., and T. Hata, “Surface-chemical criteria for optimum adhesion,” in Recent Advances in Adhesion, Lee, L.-H., ed., 65-76, American Chemical Society, Sep 1971.
2077. Kitova, S., M. Minchev, and G. Danev, “RF plasma treatment of polycarbonate substrates,” J. Optoelectronics and Advanced Materials, 7, 2607-2612, (Oct 2005).
The effect of Ar, Ar/C2H5OH, O2 and Ar/O2 RF (13.56 MHz) plasma treatments on surface free energy and morphology, optical properties and adhesion of polycarbonate (PC) substrates has been studied. Changes in the surface properties were followed as a function of the plasma treatment time. The polar and dispersion components of the polymer free surface energy were determined on the basis of the theory of Owens, Wendt, Kaelble and Uy. It was found that all RF plasma treatments led to an increase in the polar component of PC, mainly due to an increased hydrogen bonding ability. The increase in surface free energy reached its maximum at short plasma treatment with 3:1 gas mixture of Ar/O2. This treatment also led to pronounced improvement of the adhesion of thin SiO2 films plasma deposited on modified PC substrates, while the treatments with pure oxygen or Ar/ethanol plasma had negative effect on the adhesion.
504. Kitzke, P.T., “Chemical and physical changes on polymer film surfaces due to electrical discharge treatment (PhD thesis),” Univ. of Colorado, 1973.
1981. Kiyozumi, K., T. Kitakoji, K. Uchiyama, and J. Goto, “Surface treatment of plastics by plasmajet,” J. Adhesion, 3, 77-81, (Sep 1971).
2252. Klages, C.-P., A. Hinze. P. Willich, and M. Thomas, “Atmospheric-pressure plasma amination of polymer surfaces,” J. Adhesion Science and Technology, 24, 1167-1180, (2010).
Using dielectric barrier discharges (DBDs) in suitable gas atmospheres, appreciable densities of amino groups can be generated on polymer surfaces. After the introduction and a few remarks on analytical methods for the determination of functional groups densities, this paper presents a short summary of recent studies on the mechanism of the polymer surface amination from nitrogen and nitrogen/hydrogen mixtures, and possible relevant precursor species. Combination of chemical derivatization with quantitative FT-IR spectroscopy was employed for the determination of primary amino groups densities introduced on polyolefin surfaces in DBD afterglows in N2 and N2 + H2 mixtures. Owing to the possibility to generate atmospheric-pressure plasmas in sub-mm3 volumes, DBD plasmas can be used to modify polymer surfaces area selectively: a new process termed 'plasma printing' can be applied for the achievement of micropatterned surface modifications, such as hydrophilization/hydrophobization or chemical functionalization. Direct-patterning polymer surface modification processes are of interest for biochemical/biomedical applications as well as for polymer electronics. Two examples are presented in more detail: • the area-selective plasma amination of carbon-filled polypropylene minidiscs to manufacture microarrays with peptide libraries utilizing parallel combinatorial chemical synthesis, and •the continuous treatment of polymer foils by means of reel-to-reel patterned plasma amination for the subsequent electroless copper metallization, leading to a fast and highly efficient process for the manufacture of structured metallizations for flexible printed circuits or RFID antennas.
2933. Klein, A., “The relationship of surface characteristics and successful corona treating,” PFFC, 27, 8-12, (Jan 2022).
3011. Klein, A., “Understanding surface activation: corona treatment,” PFFC, 28, 36, (Nov 2023).
1730. Klein, K., “Efficient corona treating saves time and energy,” Flexible Packaging, 10, 26, (Nov 2008).
505. Klemberg-Sapieha, J.E., et al, “Surface enhancement of polymers by low pressure plasma treatments,” in ANTEC 95, Society of Plastics Engineers, 1995.
1610. Klemberg-Sapieha, Y., A. Migdal, M.R. Wertheimer, and H.P. Schreiber, “Application of plasma treatments to the control of properties in polymer systems,” in Interfaces in Polymer, Ceramic, and Metal Matrix Composites, Ishida, H., ed., 583-594, Elsevier, 1988.
1685. Klomp, A.J.A., et al, “Treatment of PET nonwoven with a water vapor or carbon dioxide plasma,” J. Applied Polymer Science, 75, 480-494, (2000).
506. Kloubek, J., “Interaction of polar forces and their contribution to the work of adhesion,” J. Adhesion, 6, 293+, (1974).
815. Kloubek, J., “Development of methods for surface free energy determination using contact angles of liquids on solids,” Advances in Colloid and Interface Science, 38, 99-142, (Mar 1992).
2036. Kloubek, J., “Evaluation of surface free energy of polyacetylene from contact angles of liquids,” Langmuir, 5, 1127-1130, (Jul 1989).
2044. Kloubek, J., “Evaluation of surface free energy of polyacetylene from contact angles of liquids [Erratum],” Langmuir, 6, 1034, (May 1990).
1954. Kloubek, J., and H.P. Schreiber, “Futher comments on contact angle measurements on polymer solids,” J. Adhesion, 42, 87-90, (Aug 1993).
1665. Knospe, A., “Pre-treatment of aluminum with plasma in air,” Aluminum International Today, 19, (Jul 2007).
507. Ko, Y.C., “Characterization of hydrophobic/hydrophilic polymeric surfaces by contact angle measurements (MS thesis),” Univ. of Washington, 1978.
197. Ko, Y.C., D.B. Ratner, and A.S. Hoffman, “Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements,” J. Colloid and Interface Science, 82, 25-37, (1981).
1561. Kobayashi, T., and H. Kumagai, “Surface modification of polymers by ozone: Comparison of polyethylene and polystyrene treated at different temperatures,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 4, Mittal, K.L., ed., 113-125, VSP, May 2007.
1375. Kogelschatz, U., “Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,” Plasma Chemistry and Plasma Processing, 23, 1-46, (Mar 2003).
1539. Kogelschatz, U., Y.S. Akishev, K.H. Becker, E.E. Kunhart, M. Kogoma, et al, “DC and low frequency air plasma sources,” in Non-Equilibrium Air Plasmas at Atmospheric Pressure, Becker, K.H., U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., 276-361, Institute of Physics, Nov 2004.
1537. Kogelschatz, U., Y.S. Akishev, and A.P. Napartovich, “History of non-equilibrium air discharges,” in Non-Equilibrium Air Plasmas at Atmospheric Pressure, Becker, K.H., U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., 17-75, Institute of Physics, Nov 2004.
198. Kogoma, M., H. Kasai, and K. Takahashi, “Wettability control of a plastic surface by CF4-O2 plasma and its etching effect,” J. Physics, 20, 147-149, (Jan 1987).
867. Kogoma, M., R. Prat, T. Suwa, A. Takeda, S. Okazaki, and T. Inomata, “Plasma modification at atmospheric pressure,” in Plasma Processing of Polymers (NATO Science Series E: Applied Sciences, Vol. 346), d'Agostino, R., P. Favia, and F. Fracassi, eds., 379-394, Kluwer Academic, Nov 1997.
2078. Koh, S.-K., W.-K. Choi, J.-S. Cho, S.-K. Song, Y.-M. Kim, and H.-J. Jung, “Ar+ ion irradiation in oxygen environment for improving wettability of polymethylmethacrylate,” J. Materials Research, 11, 2933-2939, (Nov 1996).
1223. Koh, S.K., J.S. Cho, K.H. Kim, S. Han, and Y.W. Beag, “Altering a polymer surface chemical structure by an ion-assisted reaction,” J. Adhesion Science and Technology, 16, 129-142, (2002).
889. Koh, S.K., J.S. Cho, S. Han, K.H. Kim, and Y.W. Beag, “Surface modifications by ion-assisted reactions,” in Metallization of Polymers 2, Sacher, E., ed., 165-190, Plenum Publishers, Oct 2002.
2827. Kohinhofer, G., “Reviewing surface treatments: Decorating, printing and bonding on plastic IS possible,” https://plasticsdecorating.com/enews/2020/reviewing-surface-treatments-decorating-printing-and-bonding-on-plastic-is-possible, Jul 2020.
2305. Kolbe, A., and P. Dinter, “Device for the surface treatment of film webs by means of electrical corona discharge,” U.S. Patent 4239973, Dec 1980.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->