ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 28 of 76, ordered by
2518. Inagaki, N., S. Tasaka, and S. Shimada, “Comparative studies on surface modification of poly(ethylene terephthalate) by remote and direct argon plasmas,” J. Applied Polymer Science, 79, 808-815, (Jan 2001).
1862. Inagaki, N., S. Tasaka, and Y.W. Park, “Effects of the surface modification by remote hydrogen plasma on adhesion in the electroless copper/tetrafluoroethylene-hexafluoropropylene copolymer (FEP) system,” J. Adhesion Science and Technology, 12, 1105-1119, (1998).
1172. Inagaki, N., and K. Narushima, “Surface modification of aromatic polyester films for copper metallization,” in PMSE Preprints Volume 94, Spring 2006, Society of Plastics Engineers, Mar 2006.
170. Inoue, H., A. Matsumoto, K. Matsukawa, et al, “Surface characteristics of polydimethylsiloxane-poly(methylmethacrylate) block copolymers and their PMMA blends,” J. Applied Polymer Science, 41, 1815-1829, (1990).
487. Iriyama, Y., “Plasma polymerization and plasma treatment for modification of surfaces of polymeric materials (PhD thesis),” Univ. of Missouri, Rolla, 1989.
640. Iriyama, Y., and H. Yasuda, “Plasma treatment and plasma polymerization for surface modification of flexible poly(vinyl chloride),” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 97-124, John Wiley & Sons, 1988.
488. Ironman, R., “Corona treatment has key role for English flexible packager,” Paper Film & Foil Converter, 61, 74+, (Jun 1987).
489. Ishiguro, S., “Surface tension of aqueous polymer solutions (MS thesis),” Univ. of Illinois, Chicago, 1991.
171. Ishimi, K., H. Hikita, and M.N. Esmail, “Dynamic contact angles on moving plates,” AIChe Journal, 32, 486-492, (1986).
870. Israelachvili, J., Intermolecular & Surface Forces, 2 ed., Academic Press, 1992.
172. Israelachvili, J.N., and B.W. Ninham, “Intermolecular forces - the long and short of it,” J. Colloid and Interface Science, 58, 14-25, (1977).
2038. Israelachvili, J.N., and M.L. Gee, “Contact angles on chemically heterogeneous surfaces,” Langmuir, 5, 288-289, (Jan 1989).
847. Iwamori, S., N. Yanagawa, M. Sadamoto, R. Nara, and S. Nakahara, “RF plasma etching of a polyimide film with oxygen mixed with nitrogen trifluoride,” in Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Vol. 2, Mittal, K.L., ed., 407-418, VSP, Jun 2003.
173. Iwata, H., A. Kishada, M. Suzuki, Y. Hata, and Y. Ikada, “Oxidation of polyethylene surface by corona discharge and subsequent graft polymerization,” J. Polymer Science Part A: Polymer Chemistry, 26, 3309-3322, (1988).
1805. Iyengar, D.R., S.M. Perutz, C.-A. Dai, C.K. Ober, and E.J. Kramer, “Surface segregation studies of fluorine-containing diblock copolymers,” Macromolecules, 29, 1229-1234, (1996).
938. Iyengar, Y., and D.E. Erickson, “Role of adhesive-substrate compatability in adhesion,” J. Applied Polymer Science, 11, 2311-2324, (1967).
2971. Izdebska-Podsiadly, J., “Application of plasma in printed surfaces,” in Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields, S. Thomas, M. Mozetic, U. Cvelbar, P. Spatenka, and K.M. Praveen, eds., 159-191, Elsevier, Oct 2018.
490. Jackson, L.C., “Surface characterization based on solubility parameters,” Adhesives Age, 19, 17+, (Oct 1976).
1219. Jacobasch, H.-J., K. Grundke, S. Schneider, and F. Simon, “The influence of additives on the adhesion behaviour of thermoplastic materials used in the automotive industry,” Progress in Organic Coatings, 26, 131-143, (Sep 1995).
1948. Jacobasch, H.J., K. Grundke, S. Schneider, and F. Simon, “Surface characterization of polymers by physico-chemical measurements,” J. Adhesion, 48, 57-73, (Jan 1995).
2709. Jacobs, T., R. Morent, N. De Geyter, T. Desmet, S. Van Vlierberghe, P. Dubruel, and C. Leys, “The effect of medium pressure plasma treatment on thin poly-caprolactone layers,” J. Adhesion Science and Technology, 26, 2239-2249, (2012).
In this work, the effect of medium pressure plasma treatment on thin poly-ϵ-caprolactone (PCL) layers on glass plates is investigated. PCL is a biocompatible and biodegradable polymer which potentially can be used for bone repair, tissue engineering and other biomedical applications. However, cell adhesion and proliferation are inadequate due to its low surface energy and a surface modification is required in most applications. To enhance the surface properties of thin PCL layers spin coated on glass plates, a dielectric barrier discharge (DBD) at medium pressure operating in different atmospheres (dry air, argon, helium) was used. After plasma treatment, water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to examine the PCL samples. These measurements show that the medium pressure plasma treatment is able to increase the hydrophilic character of the samples, due to an incorporation of oxygen groups at the surface and that the surface roughness is significantly decreased after plasma treatment.
804. Jacobs, T., R. Morent, N. De Geyter, and C. Leys, “Effect of He/CF4 DBD operating parameters on PET surface modification,” Plasma Processes and Polymers, 6, S412-S418, (Jun 2009).
In this paper, a dielectric barrier discharge (DBD) operated at (sub)atmospheric pressure in a 95/5% He/CF4 mixture is employed to increase the hydrophobicity of a poly(ethylene terephthalate) (PET) film. This paper studies the influence of different operating parameters on the hydrophobic properties of the PET film using contact angle measurements. Results clearly show that the hydrophobicity of the PET film is only enhanced when using large gas flows. Moreover, this work demonstrates that operating pressure and discharge power have a significant influence on the rate of plasma modification as well as on the uniformity of the plasma treatment. Also important to mention is that no ageing effect is observed. As a result, one can conclude that the utilized DBD is an efficient tool to create stable, hydrophobic PET surfaces.
2870. Jacobsen, J., M. Keif, X. Rong, J. Singh, and K. Vorst, “Flexography printing performance of PLA film,” J. Applied Packaging Research, 3, 91-104, (Apr 2009).
During the past decade polylactide acid (PLA) polymer has been the subject of numerous researches aimed at comparing it with traditional petroleum based polymers for many packaging applications. PLA is biodegradable and derived from agricultural by-products such as corn starch or other starch-rich substances like maize, sugar or wheat.While PLA is currently being used in many packaging applications with well documented performance, little work has been done comparing printing processes and performance. This study presents PLA printing performance and sustainability findings using the common flexography printing process. Various analytical methods were used to evaluate performance and provide recommendations for optimized printing on PLA as compared to PET, oriented PP and oriented PS. Results of this study found that PLA films were comparable in printability and runnability to standard petroleum based flexible packaging films.
2755. Jadon, N., and M.D. Nolan, “Exploring the benefits of newly developed adhesion promotion methods,” in 1998 Polymers, Laminations and Coatings Conference Proceedings, 1109-1118, TAPPI Press, Sep 1998.
1220. Jaehnichen, K., J. Frank, D. Pleul, and F. Simon, “A study of paint adhesion to polymeric substrates,” J. Adhesion Science and Technology, 17, 1635-1654, (2003).
491. Jalbert, C., et al, “The effects of end groups on surface and interface properties,” in ANTEC 95, Society of Plastics Engineers, 1995.
1289. Jama, C., O. Dessaux, P. Goudmand, L. Gengembre, and J. Grimblot, “Treatment of poly(ether ether ketone) (PEEK) plastic surfaces by remote plasma discharge. XPS investigation of the ageing of plasma-treated PEEK,” Surface and Interface Analysis, 18, 751-756, (1992).
1276. Jana, T., B.C. Roy, R. Ghosh, and S. Maiti, “Biodegradable film, IV. Printability study on biodegradable film,” J. Applied Polymer Science, 79, 1273-1277, (Feb 2001).
174. Janczuk, B., T. Bialopiotrowicz, and W. Wojcik, “The components of surface tension of liquids and their usefulness in determinations of surface free energy of solids,” J. Colloid and Interface Science, 127, 59-66, (1989).
175. Janczuk, B., and T. Bialopiotrowicz, “Surface free energy components of liquids and low energy solids and contact angles,” J. Colloid and Interface Science, 127, 189-204, (1989).
176. Janczuk, B., and T. Bialopiotrowicz, “The total surface free energy and the contact angle in the case of low energetic solids,” J. Colloid and Interface Science, 140, 362-372, (1990).
2917. Janule, V.P., “On-site surface and wetting tension measurements of water-based coatings and substrates,” Pigment & Resin Technology, 24, 7-12, (1995).
2786. Jarnstrom, J., B. Grandqvist, M. Jarn, C.-M. Tag, and J.B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 46-55, (2007).
The surface free energy is an essential paper property affecting liquid/ink interaction with the ink-jet paper surface. Different ways of calculating surface energy components for ink-jet papers is introduced. The results given by the very useful van Oss–Chaudhury–Good (vOCG) bi-bidentate model are compared with simpler mono-bidentate and mono-monodentate models. The unbalance in the acid–base (AB) values of the vOCG-model is compensated for, and occasional negative roots obtained are removed when applying the simpler mono-bidentate- and mono-monodentate models. The simple and elegant mono-monodentate model produces comparable values with the other models, and is thus recommended. The calculated percent work of adhesion between the probe liquids and substrates correlates well with surface energy component values. Also the percent work of adhesion between the inks and substrates correlates with surface energy values.
697. Jarvis, S.P., “Adhesion on the nanoscale,” in Nano-Surface Chemistry, Rosoff, M., ed., 17-58, Marcel Dekker, Oct 2001.
1718. Jaycock, M.J., and G.D. Parfitt, “The study of liquid interfaces,” in Chemistry of Interfaces, John Wiley & Sons, 1981.
944. Jensen, W.B., “Lewis acid-base interactions and adhesion theory,” Rubber Chemistry and Technology, 55, 881-901, (1982).
1750. Jensen, W.B., “The Lewis acid-base concepts: recent results and prospects for the future,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Mittal, K.L., ed., 3-24, VSP, Nov 1991.
641. Jhon, M.S., and S.H. Yuk, “Contact angles at polymer - water interface; temperature dependence and induced deformation,” in Polymer Surface Dynamics, Andrade, J.D., ed., 25-44, Plenum Press, 1988.
2919. Jin, M., F. Thomsen, T. Skrivanek, and T. Willers, “Why test inks cannot tell the whole truth about surface free energy of solids,” in Advances in Contact Angle, Wettability and Adhesion, Volume 2, K.L. Mittal, ed., 419-438, Wiley, Sep 2015.
960. Jingxin, L., H. Guangjian, L. Qiman, and L. Xiaohong, “Surface structure and adhesive properties of biaxially oriented polypropylene film grafted with poly(acrylic amide) using corona discharge,” Polymer Engineering and Science, 41, 782-785, (May 2001).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->