ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 27 of 76, ordered by
2334. Hudis, M., “Plasma treatment of solid materials,” in Techniques and Applications of Plasma Chemistry, Hollahan, J.R., and A.T. Bell, eds., 113-147, John Wiley & Sons, 1974.
1747. Hudis, M., and L.E. Prescott, “Surface crosslinking of polyethylene produced by the ultraviolet radiation from a hydrogen glow discharge,” Polymer Letters, 10, 179-183, (1972).
1525. Hugill, J, and T. Saktioto, “A simplified chemical kinetic model for slightly ionized, atmospheric pressure nitrogen plasmas,” Plasma Sources Science and Technology, 10, 38-42, (Nov 2000).
165. Huh, C., and S.G. Mason, “Effects of surface roughness on wetting (theoretical),” J. Colloid and Interface Science, 60, 11-38, (1977).
2964. Huhtamaki, T., X. Tian, J.T. Korhonen, and R.H.A. Ras, “Surface-wetting characterization using contact-angle measurements,” Nature Protocols, 13, 1521-1538, (Aug 2018).
Wetting, the process of water interacting with a surface, is critical in our everyday lives and in many biological and technological systems. The contact angle is the angle at the interface where water, air and solid meet, and its value is a measure of how likely the surface is to be wetted by the water. Low contact-angle values demonstrate a tendency of the water to spread and adhere to the surface, whereas high contact-angle values show the surface’s tendency to repel water. The most common method for surface-wetting characterization is sessile-drop goniometry, due to its simplicity. The method determines the contact angle from the shape of the droplet and can be applied to a wide variety of materials, from biological surfaces to polymers, metals, ceramics, minerals and so on. The apparent simplicity of the method is misleading, however, and obtaining meaningful results requires minimization of random and systematic errors. This article provides a protocol for performing reliable and reproducible measurements of the advancing contact angle (ACA) and the receding contact angle (RCA) by slowly increasing and reducing the volume of a probe drop, respectively. One pair of ACA and RCA measurements takes ~15–20 min to complete, whereas the whole protocol with repeat measurements may take ~1–2 h. This protocol focuses on using water as a probe liquid, and advice is given on how it can be modified for the use of other probe liquids.
166. Huntsberger, J.R., “Interfacial energies, contact angles, and adhesion,” in Treatise on Adhesion and Adhesives, Vol. 5, 1-20, Marcel Dekker, 1981.
485. Huntsberger, J.R., “Surface energy, wetting, and adhesion,” J. Adhesion, 12, 3+, (1981).
1607. Huntsberger, J.R., “The relationship between wetting and adhesion,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 180-188, American Chemical Society, 1964.
1973. Huntsberger, J.R., “Reply to A.W. Neumann,” J. Adhesion, 9, 93-94, (1977).
1976. Huntsberger, J.R., “Surface chemistry and adhesion: A review of some fundamentals,” J. Adhesion, 7, 289-299, (1976).
1800. Hwang, S.S., D.R. Iyengar, E.J. Kramer, and C.K. Ober, “Synthesis and characterization of fluorinated block copolymers for low surface energy applications,” Polymer, 36, 1321-1325, (1995).
831. Hwang, Y.J., S. Matthews, M. McCord, and M. Bourham, “Surface modification of organic polymer films treated in atmospheric plasmas,” J. Electrochemical Society, 151, C495-C501, (2004).
The effect of plasma treatment on surface characteristics of polyethylene terephthalate films was investigated using helium and oxygenated-helium atmospheric plasmas. Sample exposure to plasma was conducted in a closed ventilation test cell inside the main plasma chamber with variable exposure times. The percent weigh loss of the samples showed an initial increase followed by decrease with extended exposure time, indicating a combined mechanism of etching and redeposition. The wettability as measured by the contact angle showed a sharp initial increase followed by a steady-state trend with increased exposure time, suggesting a change in surface functionality. Atomic force microscopy analysis revealed increase in surface roughness, as well as evidence of redeposition of etched volatiles. Functionality changes were measured using X-ray photoelectron spectroscopy and these changes were correlated to the new plasma-induced properties. © 2004 The Electrochemical Society. All rights reserved.
1374. Hwang, Y.J., Y. Qiu, C. Zhang, B. Jarrard, R. Stedeford, J. Tsai, et al, “Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers,” J. Adhesion Science and Technology, 17, 847-860, (2003).
1795. Hybart, F.J., and T.R. White, “The surface tension of viscous polymers at high temperature,” J. Applied Polymer Science, 3, 118-121, (1960).
2612. Hyllberg, B., “Corona-treating roll covering technology and innovation, Part 1,” Converting Quarterly, 4, 56-60, (Jul 2014).
2613. Hyllberg, B., “Corona treating roll covering technology and innovation: Part 2,” Converting Quarterly, 4, 66-69, (Oct 2014).
2809. Hyllberg, B., “Dielectrics and their role with corona treaters,” PFFC, 25, 8-11, (Jan 2020).
757. Ibidunni, A.O., and R.J. Brunner, “Metal/polymer adhesion: effect of ion bombardment on polymer interfacial reactivity,” in Metallized Plastics: Fundamentals and Applications, Mittal, K.L., ed., 281-290, Marcel Dekker, Nov 1997.
2934. Idacavage, M., “Adhesion and energy-curable coatings,” UV + EB Technology, 8, 14-15, (Oct 2022).
2588. Idacavage, M.J., “Achieving adhesion to difficult metal and plastic substrates,” Presented at RadTech 2014, May 2014.
2072. Idage, S.B., and S. Badrinarayanan, “Surface modification of polystyrene using nitrogen plasma: An x-ray photoelectron spectroscopy study,” Langmuir, 14, 2780-2785, (May 1998).
1190. Ikada, Y., Surface Modification of Polymers for Metal Adhesion, CRC Press, Sep 2003.
167. Ikada, Y., and Y. Uyama, Lubricating Polymer Surfaces, Technomic, Jan 1993.
1285. Ikezaki, K., T. Ishii, and T. Miura, “Thermal influence of vacuum deposition on metallic electrodes on TSC from positively corona-charged polyethylene films,” Physica Status Solidi, 85, 615-618, (Oct 1984).
2371. Imada, K., S. Ueno, and H. Nomura, “Method for modifying surface properties of shaped articles of vinyl chloride based resin with low temperature plasma,” U.S. Patent 4315808, Feb 1982.
2232. Impastato, M., “Inks, substrates & interdependency: Subtle characteristics can breed dangerous situations,” Flexo, 36, 16-23, (Mar 2011).
169. Inagaki, N., Plasma Surface Modification and Plasma Polymerization, Technomic, Mar 1996.
2489. Inagaki, N., “Selective surface modification of polymeric materials by atmospheric-pressure plasmas: Selective substitution reactions on polymer surfaces by different plasmas,” in Atmospheric Pressure Plasma Treatment of Polymers, Thomas, M., and K.L. Mittal, eds., 83-156, Scrivener, 2013.
1854. Inagaki, N., K. Narushim, S. Ejima, Y. Ikeda, S.K. Lim, Y.W. Park, K. Miyazaki, “Hydrophobic recovery of plasma modified film surfaces of ethylene-co-tetrafluoroethylene co-polymer,” J. Adhesion Science and Technology, 17, 1457-1475, (2003).
2516. Inagaki, N., K. Narushima, N. Tuchida, and K. Miyazaki, “Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces,” J. Polymer Science Part B: Polymer Physics, 42, 3727-3740, (Oct 2004).
Poly(ethylene terephthalate) (PET) film surfaces were modified by argon (Ar), oxygen (O2), hydrogen (H2), nitrogen (N2), and ammonia (NH3) plasmas, and the plasma-modified PET surfaces were investigated with scanning probe microscopy, contact-angle measurements, and X-ray photoelectron spectroscopy to characterize the surfaces. The exposure of the PET film surfaces to the plasmas led to the etching process on the surfaces and to changes in the topography of the surfaces. The etching rate and surface roughness were closely related to what kind of plasma was used and how high the radio frequency (RF) power was that was input into the plasmas. The etching rate was in the order of O2 plasma > H2 plasma > N2 plasma > Ar plasma > NH3 plasma, and the surface roughness was in the order of NH3 plasma > N2 plasma > H2 plasma > Ar plasma > O2 plasma. Heavy etching reactions did not always lead to large increases in the surface roughness. The plasmas also led to changes in the surface properties of the PET surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surfaces decreased. Modification reactions occurring on the PET surfaces depended on what plasma had been used for the modification. The O2, Ar, H2, and N2 plasmas modified mainly CH2 or phenyl rings rather than ester groups in the PET polymer chains to form CO groups. On the other hand, the NH3 plasma modified ester groups to form CO groups. Aging effects of the plasma-modified PET film surfaces continued as long as 15 days after the modification was finished. The aging effects were related to the movement of CO groups in ester residues toward the topmost layer and to the movement of CO groups away from the topmost layer. Such movement of the CO groups could occur within at least 3 nm from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3727–3740, 2004
https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.20234
1218. Inagaki, N., K. Narushima, Y. Tsutsui, and Y. Ohyama, “Surface modification and degradation of poly(lactic acid) films by Ar-plasma,” J. Adhesion Science and Technology, 16, 1041-1054, (2002).
1217. Inagaki, N., K. Narushima, and A. Yokoi, “Surface modification of PET films by a combination of vinylphthalimide deposition and Ar plasma irradiation,” J. Adhesion Science and Technology, 18, 1517-1528, (2004).
A new surface modification technique for PET films is proposed. This technique, called VPI modification technique, is a combination of two processes: The first step involves the deposition of vinylphthalimide (VPI) on the PET film surfaces, followed by Ar plasma irradiation of the VPI-covered film surfaces. The VPI modification technique led to large increases in the N/C atom ratio on the PET film surfaces. On the VPI-modified PET film surface, a new Nls peak containing two components due to amide groups as well as imide groups appeared. The Cls signal for the VPI-modified PET film surface also showed a new component due to ketone groups. These changes indicate that VPI reacted with the PET film surfaces to form nitrogen-containing groups. VPI modification made PET film surfaces hydrophilic. The VPI-modified film surfaces showed a decrease in water contact angle from 73 degrees to 48–56 degrees.
1472. Inagaki, N., K. Narushima, and M. Morita, “Plasma surface modification of poly(phenylene sulfide) films for copper metallization,” J. Adhesion Science and Technology, 20, 917-938, (2006).
Poly(phenylene sulfide) (PPS) films were modified by Ar, O2, N2 and NH3 plasmas in order to improve their adhesion to copper metal. All four plasmas modified the PPS film surfaces, but the NH3 plasma modification was the most effective in improving adhesion. The NH3 plasma modification brought about large changes in the surface topography and chemical composition of the PPS film surfaces. The peel strength for the Cu/plasma-modified PPS film systems increased linearly with increasing surface roughness, Ra or Rrms, of the PPS film. The plasma modification also led to considerable changes in the chemical composition of the PPS film surfaces. A large fraction of phenylene units and a small fraction of sulfide groups in the PPS film surfaces were oxidized during the plasma modification process. Nitrogen functional groups also were formed on the PPS film surfaces. The NH3 plasma modification formed S—H groups on the PPS film surfaces by reduction of S—C groups in the PPS film. Not only the mechanical interlocking effect but also the interaction of the S—H groups with the copper metal may contribute to the adhesion of the Cu/PPS film systems.
1671. Inagaki, N., K. Narushima, and T. Amano, “Introduction of carboxylic groups on ethylene-co-tetra fluoroethylene (ETFE) film surfaces by CO2 plasma,” J. Adhesion Science and Technology, 20, 1443-1462, (2006).
ETFE film surfaces were modified by CO2, O2 and Ar plasmas in order to form carboxylic groups on their surfaces, and the possibility that carboxylic groups could be predominantly introduced into the CH2–CH2 component rather than the CF2–CF2 component in the ETFE polymer chains was investigated from the viewpoint of chemical composition analyzed by XPS. The CO2 plasma modification was more effective in the selectivity of the CH2CH2 component for the introduction of carboxylic groups, as well as in the concentration of the carboxylic groups formed on the film surfaces than O2 plasma modification. The concentration of carboxylic groups formed on the ETFE film surfaces by the CO2 plasma modification was 1.40–1.50 groups per 100 carbons. Topographical changes on the ETFE film surfaces by the plasma modification were also investigated by scanning probe microscopy.
486. Inagaki, N., S. Tasaka, H. Kawai, and Y. Kimura, “Hydrophilic surface modification of polyethylene by NO-plasma treatment,” J. Adhesion Science and Technology, 4, 99-107, (1990).
2517. Inagaki, N., S. Tasaka, K. Narushima, and H. Kobayashi, “Surface modification of PET films by pulsed argon plasma,” J. Applied Polymer Science, 85, 2845-2852, (Sep 2002).
1458. Inagaki, N., S. Tasaka, and H. Kawai, “Improved adhesion of poly(tetrafluoroethylene) by NH3-plasma treatment,” J. Adhesion Science and Technology, 3, 637-649, (1989).
1887. Inagaki, N., S. Tasaka, and H. Kawai, “Surface modification of Kevlar fiber by a combination of plasma treatment and coupling agent treatment for silicone rubber composite,” J. Adhesion Science and Technology, 6, 279-291, (1992).
168. Inagaki, N., S. Tasaka, and K. Hibi, “Surface modification of Kapton film by plasma treatment,” J. Polymer Science Part A: Polymer Chemistry, 30, 1425-1431, (1992).
1908. Inagaki, N., S. Tasaka, and K. Hibi, “Improved adhesion between plasma-treated polyimide film and evaporated copper,” J. Adhesion Science and Technology, 8, 395-410, (1994) (also in Plasma Surface Modification of Polymers: Relevance to Adhesion, M. Strobel, C.S. Lyons, and K.L. Mittal, eds., p. 275-290, VSP, Oct 1994).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->