Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 23 of 76, ordered by
 

802. Gotoh, K., M. Tagawa, N. Ohmae, and M. Tagawa, “Wettability of polyimide films modified by exposure to atomic oxygen,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 2, Mittal, K.L., ed., 445-460, VSP, Dec 2000.

2723. Gotoh, K., Y. Nagai, Y. Yonehara, and Y. Kobayashi, “Surface hydrophilization of two polyester films by atmospheric-pressure plasma and ultraviolet excimer light exposures,” J. Adhesion Science and Technology, 29, 473-486, (2015).

Polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) films were treated with an atmospheric-pressure plasma (APP) jet and a 172-nm ultraviolet (UV) excimer light in air. The advancing and receding water contact angles on both films decreased after the treatments, especially after APP treatment. After the treatments, the hydrophobic recovery was observed and almost diminished within a week. The dispersive component of the surface free energy of the two polyester films did not change due to the APP and UV exposure, whereas the acid–base component drastically increased after the treatments. The X-ray photoelectron spectroscopy results showed that the polyester film surfaces were oxidized by the treatments. From the AFM images, the topographical change on the film surfaces due to the treatments was clearly observed. It was found that the APP treatment of the PET film prevented the deposition of particulate soils in air due to the decrease in the contact area between the film and the soil particle. Furthermore, the soil release in the aqueous solutions was promoted as a result of the hydrophilization of the polyester films due to the APP treatment.

2291. Gotoh, K., Y. Nakata, M. Tagawa, and M. Tagawa, “Wettability of ultraviolet excimer-exposed PE, PI, and PTFE films determined by the contact angle measurements,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224, 165-173, (Aug 2003).

2352. Gould, D.E., and L.A. Preli Jr., “Treating of plastic coated foils,” U.S. Patent 3257303, Jun 1966.

1559. Grace, J., H.K. Zhuang, and L. Gerenser, “Importance of process conditions in polymer surface modification: a critical assessment,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 4, Mittal, K.L., ed., 3-24, VSP, May 2007.

1115. Grace, J.M., Plasma Web Treatment, Society of Vacuum Coaters, Mar 2005.

2396. Grace, J.M., J. Chen, L.J. Gerenser, and D.A. Glocker, “Use of glow discharge treatment to promote adhesion of aqueous coatings to substrate,” U.S. Patent 5538841, Jul 1996.

2397. Grace, J.M., J. Chen, L.J. Gerenser, and D.A. Glocker, “Use of glow discharge treatment to promote adhesion of aqueous coatings to substrate,” U.S. Patent 5582921, Dec 1996.

2413. Grace, J.M., L.J. Gerenser, C.J. Landry-Coltrain, K.D. Sieber, et al, “High-efficiency plasma treatment of paper,” U.S. Patent 6565930, May 2003.

1745. Grace, J.M., L.J. Gerenser, K.D. Sieber, et al, “High-efficiency plasma treatment of polyolefins,” U.S. Patent 6399159, 2002.

1746. Grace, J.M., and L.J. Gerenser, “Plasma treatment of polymers,” J. Dispersion Science and Technology, 24, 305-341, (2003).

1569. Graham, W.G., “Plasma science and technology,” in Plasma Technologies for Textiles, Shishoo, R., ed., 1-24, Woodhead Publishing, Mar 2007.

1502. Grande, J.A., “Now plasma-treat the resin, not the molded part,” Plastics Technology, 52, 32-33, (Dec 2006).

1672. Granqvist, B., J. Jarnstrom, C.M. Tag, M. Jarn, and J.B. Rosenholm, “Acid-base properties of polymer-coated paper,” J. Adhesion Science and Technology, 21, 465-485, (2007).

The wetting behavior of a series of polymer-coated papers has been studied. Different ways of determining the acid–base properties of the polymers are presented. The well-known van Oss–Chaudhury–Good (vOCG) bi–bi polar model is compared with more simplified mono–bi polar and mono–mono polar models. The effect of surface roughness on the wetting was also studied with atomic force microscopy. The overall wetting of each probe liquid was evaluated by calculating the work of adhesion to the polymer surfaces. It is shown that ethylene glycol and water may be considered as mono polar liquids, which simplifies the original vOCG-model. It is also shown that in most cases the surface energy values are in the same range when using both the complex bi–bi polar approach and the simpler mono–mono polar approach. The different polymers used are found to be of a predominating basic character.

466. Grant, J.L., D.S. Dunn, and D.J. McClure, “Argon and oxygen sputter etching of polystyrene, polypropylene, and poly(ethylene terephthalate) thin films,” J. Vacuum Science and Technology, A6, 2213-2220, (1988).

945. Gray, V.R., “Contact angles, their significance and measurement,” in S.C.I. Monograph #25 : Wetting, 99-119, S.C.I., 1966.

1213. Green, M.D., F.J. Guild, and R.D. Adams, “Characterisation and comparison of industrially pre-treated homopolymer polypropylene, HF135M,” Intl. J. Adhesion and Adhesives, 22, 81-90, (2002).

146. Greene, R., “High energy system prepares molded parts,” Modern Plastics, 68, 30-31, (Aug 1991).

1899. Greenwood, O.D., R.D. Boyd, J. Hopkins, and J.P.S. Badyal, “Atmospheric silent discharge versus low-pressure plasma treatment of polyethylene, polypropylene, polyisobutylene, and polystyrene,” J. Adhesion Science and Technology, 9, 311-326, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 17-32, VSP, May 1996).

1576. Greger, R., “Pre-treatment of plastics with low-pressure plasma prior to flocking,” Flock, 7, 107, (2002).

1174. Gregory, B.H., Extrusion Coating: A Process Manual, Trafford Publishing, May 2005.

467. Gregory, B.H., D. Michiels, and W.D. McIntyre, “Adhesion improvement by ozone treatment,” in 1982 Paper Synthetics Conference Proceedings, 167-172, TAPPI Press, 1982.

809. Greig, S., “Corona treatment - an update for running waterbased inks,” Flexible Packaging, 5, 36-39, (May 2003).

1346. Greig, S., “Web Treatment - Going Solventless,” Sherman Treaters Ltd., 2005.

995. Greig, S., P.B. Sherman, R. Pitman, and C. Barley, “Adhesion promoters: Corona flame and ozone - a technology update,” Presented at TAPPI Polymers, Laminations, & Coatings Conference Proceedings 2000, Aug 2000.

1114. Greig, S., and N. Jadon, “Corona, ozone and flame treaters for extrusion coating lines,” in 8th European Polymers, Films, Laminations and Extrusion Coatings Conference, TAPPI Press, May 2001.

1483. Greiveldinger, M., and M.E.R. Shanahan, “A critique of the mathematical coherence of acid-base interfacial free energy theory,” J. Colloid and Interface Science, 215, 170-178, (1999).

2389. Gribbin, J.D., L. Bother, and P. Dinter, “Process for passing a hydrophobic substrate through a corona discharge zone and simultaneously introducing an adhesive promoting aerosol,” U.S. Patent 5271970, Dec 1993.

936. Griese, E.W. Jr., “Surface energy and surface tension,” Cork Ind., Dec 1994.

937. Griese, E.W. Jr., “Surface energy & printing success,” Cork Ind., Feb 1995.

668. Griesser, H.J., T.R. Gengenbach, L. Dai, S. Li, and R.C. Chatelier, “Plasma surface modifications for structural and biomedical adhesion applications,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, van Ooij, W.J., and H.R. Anderson, Jr., eds., 307-328, VSP, 1998.

2781. Grindstaff, T.H., “A simple apparatus and technique for contact angle measurements on small-denier single fibers,” Textile Research J., 39, 958+, (1969).

1717. Grosse, W., “Process and device for Opto-Dynamic Surface Tension (or surface energy) measurement - ODSTM-1 - for running plastic films or other substrates,” Germany Patent Application DE 195.42.289 A 1, 2000.

1132. Grundke, K., “Surface-energetic properties of polymers in controlled architecture,” in Molecular Interfacial Phenomena of Polymers and Biopolymers, Chen, P., ed., 323-418, Woodhead Publishing, Sep 2005.

1898. Grundke, K., H.-J. Jacobasch, F. Simon, and S.T. Schneider, “Physico-chemical properties of surface-modified polymers,” J. Adhesion Science and Technology, 9, 327-350, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 431-454, VSP, May 1996).

1330. Grundke, K., T. Bogumil, T. Gietzelt, H.-J. Jacobasch, D.Y. Kwok, A.W. Neumann, “Wetting measurements on smooth, rough and porous solid surfaces,” Progress in Colloid and Polymer Science, 101, 58-68, (1996).

1799. Grundke, K., and A. Augsburg, “On the determination of the surface energetics of porous polymer materials,” J. Adhesion Science and Technology, 14, 765-775, (2000).

1883. Guezenoc, H., Y. Segui, S. Thery, and K. Asfardjani, “Adhesion characteristics of plasma-treated polypropylene to mild steel,” J. Adhesion Science and Technology, 7, 953-965, (1993).

1922. Guild, F.J., M.D. Green, R. Stewart, and V. Goodship, “Air plasma pre-treatment for polypropylene automotive bumpers,” J. Adhesion, 84, 530-542, (Jun 2008).

The effect of forced air-plasma pre-treatment, Lectro-treat (TM), on polypropylene has been investigated using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (AR-XPS), and atomic force microscopy (AFM). The pre-treatment process is found to induce both surface chemistry changes and topographical changes. The parameters of the pre-treatment process can be optimised from these observations. The Lectro-treat pre-treatment process has been used for adhesive bonding of a demonstrator component: a bumper assembly. The adhesively bonded bumpers performed successfully in standard automotive tests.

2347. Guilliotte, J.E., and T.F. McLaughlin Jr., “Corona discharge apparatus for the surface treatment of plastic resins,” U.S. Patent 3133193, May 1964.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->