Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 22 of 76, ordered by
 

2067. Goldman, M., A. Goldman, and R.S. Sigmond, “The corona discharge, its properties and specific uses,” Pure and Applied Chemistry, 57, 1353-1362, (1985).

2322. Goldshtein, D., “Modification of the surface of polytetrafluoroethylene in a flow discharge plasma in vapors of various organic compounds,” High Energy Chemistry, 25, 303-306, (1991).

136. Golub, M.A., T. Wydeven, and R.D. Cormia, “ESCA study of Kapton exposed to atomic oxygen in low Earth orbit or downstream from a radio-frequency oxygen plasma,” Polymer Communications, 29, 285-288, (1988).

137. Golub, M.A., T. Wydeven, and R.D. Cormia, “ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low Eart h orbit or downstream from a radio-frequency oxygen plasma,” Polymer, 30, 1571-1575, (1989).

138. Golub, M.A., and R.D. Cormia, “ESCA study of poly(vinylidene fluoride) tetrafluoroethylene-ethylene copolymer and polyethylene exposed to atomic oxygen,” Polymer, 30, 1576-1581, (1989).

2423. Gomathi, N., and S. Neogi, “Surface modification of polypropylene using argon plasma: Statistical optimization of the process variables,” Applied Surface Science, 255, 7590-7600, (2009).

Low pressure plasma treatment using radiofrequency (rf) discharge of argon gas was employed to improve the hydrophilicity of polypropylene. The effects of argon plasma on the wettability, surface chemistry and surface morphology of polypropylene were studied using static contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Increase in surface energy of polypropylene was observed as a result of argon plasma treatment. SEM and AFM images revealed the increased surface roughness. A set of identified process variables (rf power, pressure, argon flow rate and time) were used in this study and were optimized using central composite design (CCD) of response surface methodology (RSM). A statistical model was developed to represent the surface energy in terms of the process variables mentioned above. Accuracy of the model was verified and found to be high.

635. Gombotz, W.R., and A.S. Hoffman, “Functionalization of polymeric films by plasma polymerization of allyl alcohol and allylamine,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 285-303, John Wiley & Sons, May 1988.

2270. Gonzalez, E. II, M.D. Barankin, P.C. Guechl, and R.F. Hicks, “Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma,” Plasma Processes and Polymers, 7, 482-493, (Jun 2010).

An atmospheric pressure oxygen and helium plasma was used to activate the surface of poly(methyl methacrylate) (PMMA). The plasma physics and chemistry was investigated by numerical modeling. It was shown that as the electron density of the plasma increased from 3 × 1010 to 1 × 1012 cm−3, the concentration of O atoms and metastable oxygen molecules (1Δg) in the afterglow increased from 6 × 1015 to 1 × 1017 cm−3. Exposing PMMA to the afterglow for times between 0 and 30 s led to a 35° ± 3° decrease in water contact angle, and a ten-fold increase in bond strength to several adhesives. X-ray photoelectron spectroscopy of the polymer revealed that after treatment, the surface carbon attributable to the methyl pendant groups decreased 5%, while that due to carboxyl acid groups increased 7%. The numerical modeling of the afterglow and experimental results indicate that oxygen atoms generated in the plasma oxidize the polymer chains.

2732. Gonzalez, E. II, M.D. Barankin, P.C. Guschl, and R.F. Hicks, “Ring opening of aromatic polymers by remote atmospheric-pressure plasma,” IEEE Transactions on Plasma Science, 37, 823-831, (Jun 2009).

A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.

2733. Gonzalez, E. II, M.D. Barankin, P.C. Guschl, and R.F. Hicks, “Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate,” Langmuir, 24, 12636-12643, (2008).

The surfaces of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were treated with an atmospheric-pressure oxygen and helium plasma. Changes in the energy, adhesion, and chemical composition of the surfaces were determined by contact angle measurements, mechanical pull tests, and X-ray photoelectron spectroscopy (XPS). Surface-energy calculations revealed that after plasma treatment the polarity of PET and PEN increased 6 and 10 times, respectively. In addition, adhesive bond strengths were enhanced by up to 7 times. For PET and PEN, XPS revealed an 18-29% decrease in the area of the C 1s peak at 285 eV, which is attributable to the aromatic carbon atoms. The C 1s peak area due to ester carbon atoms increased by 11 and 24% for PET and PEN, respectively, while the C 1s peak area resulting from C-O species increased by about 5% for both polymers. These results indicate that oxygen atoms generated in the plasma rapidly oxidize the aromatic rings on the polymer chains. The Langmuir adsorption rate constants for oxidizing the polymer surfaces were 15.6 and 4.6 s(-1) for PET and PEN, respectively.

141. Good, R.J., “Surface free energy of solids and liquids: thermodynamics, molecular forces, and structure,” J. Colloid and Interface Science, 59, 398-419, (1977).

637. Good, R.J., “Semantic physics of adhesion,” in Treatise on Adhesion and Adhesives, Vol. 5, Patrick, R., ed., 293-312, Marcel Dekker, 1981.

780. Good, R.J., “On the acid/base theory of contact angles,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, Mittal, K.L., ed., 167-172, VSP, Dec 2000.

991. Good, R.J., “Contact angle, wetting, and adhesion: A critical review,” J. Adhesion Science and Technology, 6, 1269-1302, (1992) (also in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, K.L. Mittal, ed., p. 3-36, VSP, Nov 1993).

1482. Good, R.J., “A thermodynamic derivation of Wenzel's modification of Young's equation for contact angle, together with a theory of hysteresis,” J. American Chemical Society, 74, 5041-5042, (1952).

1523. Good, R.J., “Estimation of surface energies from contact angles,” Nature, 212, 276-277, (1966).

1603. Good, R.J., “Theory for the estimation of surface and interfacial energies, VI: Surface energies of some fluorocarbon surfaces from contact angle measurements,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 74-87, American Chemical Society, 1964.

1647. Good, R.J., “Surface entropy and surface orientation of polar liquids,” J. Physical Chemistry, 61, 810-812, (1957).

1650. Good, R.J., “On the estimation of surface energies from contact angles,” Nature, 212, 276-277, (1966).

1652. Good, R.J., “The role of wetting and spreading in adhesion,” in Aspects of Adhesion, Alner, D.J., and K.W. Allen, eds., 182-301, Transcripta Books, 1973.

1654. Good, R.J., “Spreading pressure and contact angle,” J. Colloid and Interface Science, 52, 308, (1975).

1656. Good, R.J., “Contact angles and the surface free energy of solids,” in Colloid and Surface Science, Good, R.J., and R.R. Stromberg, eds., 31-91, Plenum Press, 1979.

140. Good, R.J., J.A. Kvikstad, and W.O. Bailey, “Anisotropic forces in the surface of a stretch-oriented polymer,” J. Colloid and Interface Science, 35, 314-327, (1971).

1649. Good, R.J., L.A. Girifalco, and G. Kraus, “A theory for the estimation of surface and interfacial energies, II: Application to surface thermodynamics of teflon and graphite,” J. Physical Chemistry, 62, 1418-1422, (1958).

1598. Good, R.J., M. Islam, R.E. Baier, and A.E. Meyer, “The effect of surface hydrogen bonding (acid-base interaction) on the hydrophobicity or hydrophilicity of copolymers: variation of contact angles and cell adhesion and growth with composition,” J. Dispersion Science and Technology, 19, 1163+, (1998).

663. Good, R.J., M.K. Chaudhury, and C. Yeung, “A new approach for determining roughness by means of contact angles on solids,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, van Ooij, W.J., and H.R. Anderson, Jr., eds., 181-197, VSP, 1998.

143. Good, R.J., M.K. Chaudhury, and C.J. van Oss, “Theory of adhesive forces across interfaces, I. Interfacial hydrogen bonds as acid-base phenomena and as factors enhancing adhesion,” in Fundamentals of Adhesion, Lee, L.-H., ed., 153-172, Plenum Press, Feb 1991.

987. Good, R.J., S. Li Kuang, C. Hung-Chang, and C.K. Yeung, “Hydrogen bonding and the interfacial component of adhesion: Acid/base interactions of corona treated polypropylene,” J. Adhesion, 59, 25-37, (1996).

1939. Good, R.J., and A.K. Hawa, “Acid/base components in the molecular theory of adhesion,” J. Adhesion, 63, 5-13, (Jun 1997).

144. Good, R.J., and C.J. van Oss, “The modern theory of contact angles and the hydrogen bond components of surface energies,” in Modern Approaches to Wettability: Theory and Applications, Schrader, M.E., and G.I. Loebs, eds., 1-27, Plenum Press, Oct 1992.

1655. Good, R.J., and E.D. Kotsidas, “Contact angles on swollen polymers: the surface energy of crosslinked polystyrene,” J. Adhesion, 10, 17, (1979).

1995. Good, R.J., and E.D. Kotsidas, “The contact angle of water on polystyrene: A study of the cause of hysteresis,” J. Colloid and Interface Science, 66, 360-362, (Sep 1978).

139. Good, R.J., and L.A. Girifalco, “A theory for the estimation of surface and interfacial energies, III. Estimation of surface energies of solids from contact angle data,” J. Physical Chemistry, 64, 561-565, (1960).

142. Good, R.J., and M.K. Chaudhury, “Theory of adhesive forces across interfaces, I. The Lifshitz-van de Waals component of interaction in adhesion,” in Fundamentals of Adhesion, Lee, L.-H., ed., 137-151, Plenum Press, Feb 1991.

1657. Good, R.J., and M.N. Koo, “The effect of drop size on contact angle,” J. Colloid and Interface Science, 71, 283, (1979).

2006. Good, W.R., “A comparison of contact angle interpretations,” J. Colloid and Interface Science, 44, 63-71, (Jul 1973).

1066. Goodwin, A., “Atmospheric pressure plasma technologies for surface modification of polymers,” in AIMCAL 2003 Fall Technical Conference, AIMCAL, Oct 2003.

145. Gorzynski, M.R., “Goniometer provides accurate measurement of bottle coatings,” Packaging Technology & Engineering, 5, 48-51, (Apr 1996).

1091. Gotoh, K., “Wettability and surface free energies of polymeric materials exposed to excimer ultraviolet light and particle deposition onto their surfaces in water,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 3, Mittal, K.L., ed., 125-138, VSP, Sep 2004.

2254. Gotoh, K., A. Yasukawa, and K. Taniguchi, “Water contact angles on poly(ethylene terephthalate) film exposed to atmospheric pressure plasma,” J. Adhesion Science and Technology, 25, 307-322, (2011).

The poly(ethylene terephthalate), PET, film was exposed to atmospheric pressure plasma under various plasma processing parameters. The wettability of the PET film immediately after the exposure and after storage in air, which was determined by the sessile drop method, was strongly dependent on the plasma processing parameters. The contact angle hysteresis on the plasma-exposed PET film was examined by the Wilhelmy method. It was found that the hydrophobic recovery of the PET surface on storage after the plasma exposure was observed only for the advancing contact angle and that the receding angle remained almost the same. These experimental findings were explained on the basis of the calculation by Johnson and Dettre for the advancing and receding contact angles on model heterogeneous surfaces.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->

 Build ID built-Jan 3 2011-13:54:18
 Page ID 4240769531
 MGI Version 3.2.3
 MGI Region Path /
 Virtual Host Name dev.accudynetest.com
 Parameter Count 0
 Parameter List 
 Tag Body 
 Page Variable Count 21
 Page Variable List mgiSBShippingTotal="0.00"
 bibVar_Page="22"
 tIndex="8"
 bibVar_ResultCount="3022"
 prevURL="bibliography2.html?pageID=21&bibsort=author"
 nextURL="bibliography2.html?pageID=23&bibsort=author"
 bibsort="author"
 bibVar_LastPage="76"
 token=""
 mgiSBSubtotal="0.00"
 bibVar_FirstIndex="841"
 bibVar_PrevPage="21"
 textURL="bibliography2.html?pageID=76&bibsort=author"
 bibVar_NextPage="23"
 searchstring="NOT auth='' ORDER BY auth"
 mgiSBTotal="0.00"
 numberURL="| <a href="bibliography2.html?pageID=1&bibsort=author" class="numURL">1</a> | <a href="bibliography2.html?pageID=2&bibsort=author" class="numURL">2</a> | <a href="bibliography2.html?pageID=3&bibsort=author" class="numURL">3</a> | <a href="bibliography2.html?pageID=4&bibsort=author" class="numURL">4</a> | <a href="bibliography2.html?pageID=5&bibsort=author" class="numURL">5</a> | <a href="bibliography2.html?pageID=6&bibsort=author" class="numURL">6</a> | <a href="bibliography2.html?pageID=7&bibsort=author" class="numURL">7</a> | <a href="bibliography2.html?pageID=8&bibsort=author" class="numURL">8</a> | <a href="bibliography2.html?pageID=9&bibsort=author" class="numURL">9</a> | <a href="bibliography2.html?pageID=10&bibsort=author" class="numURL">10</a> | <a href="bibliography2.html?pageID=11&bibsort=author" class="numURL">11</a> | <a href="bibliography2.html?pageID=12&bibsort=author" class="numURL">12</a> | <a href="bibliography2.html?pageID=13&bibsort=author" class="numURL">13</a> | <a href="bibliography2.html?pageID=14&bibsort=author" class="numURL">14</a> | <a href="bibliography2.html?pageID=15&bibsort=author" class="numURL">15</a> | <a href="bibliography2.html?pageID=16&bibsort=author" class="numURL">16</a> | <a href="bibliography2.html?pageID=17&bibsort=author" class="numURL">17</a> | <a href="bibliography2.html?pageID=18&bibsort=author" class="numURL">18</a> | <a href="bibliography2.html?pageID=19&bibsort=author" class="numURL">19</a> | <a href="bibliography2.html?pageID=20&bibsort=author" class="numURL">20</a> | <a href="bibliography2.html?pageID=21&bibsort=author" class="numURL">21</a> | 22 | <a href="bibliography2.html?pageID=23&bibsort=author" class="numURL">23</a> | <a href="bibliography2.html?pageID=24&bibsort=author" class="numURL">24</a> | <a href="bibliography2.html?pageID=25&bibsort=author" class="numURL">25</a> | <a href="bibliography2.html?pageID=26&bibsort=author" class="numURL">26</a> | <a href="bibliography2.html?pageID=27&bibsort=author" class="numURL">27</a> | <a href="bibliography2.html?pageID=28&bibsort=author" class="numURL">28</a> | <a href="bibliography2.html?pageID=29&bibsort=author" class="numURL">29</a> | <a href="bibliography2.html?pageID=30&bibsort=author" class="numURL">30</a> | <a href="bibliography2.html?pageID=31&bibsort=author" class="numURL">31</a> | <a href="bibliography2.html?pageID=32&bibsort=author" class="numURL">32</a> | <a href="bibliography2.html?pageID=33&bibsort=author" class="numURL">33</a> | <a href="bibliography2.html?pageID=34&bibsort=author" class="numURL">34</a> | <a href="bibliography2.html?pageID=35&bibsort=author" class="numURL">35</a> | <a href="bibliography2.html?pageID=36&bibsort=author" class="numURL">36</a> | <a href="bibliography2.html?pageID=37&bibsort=author" class="numURL">37</a> | <a href="bibliography2.html?pageID=38&bibsort=author" class="numURL">38</a> | <a href="bibliography2.html?pageID=39&bibsort=author" class="numURL">39</a> | <a href="bibliography2.html?pageID=40&bibsort=author" class="numURL">40</a> | <a href="bibliography2.html?pageID=41&bibsort=author" class="numURL">41</a> | <a href="bibliography2.html?pageID=42&bibsort=author" class="numURL">42</a> | <a href="bibliography2.html?pageID=43&bibsort=author" class="numURL">43</a> | <a href="bibliography2.html?pageID=44&bibsort=author" class="numURL">44</a> | <a href="bibliography2.html?pageID=45&bibsort=author" class="numURL">45</a> | <a href="bibliography2.html?pageID=46&bibsort=author" class="numURL">46</a> | <a href="bibliography2.html?pageID=47&bibsort=author" class="numURL">47</a> | <a href="bibliography2.html?pageID=48&bibsort=author" class="numURL">48</a> | <a href="bibliography2.html?pageID=49&bibsort=author" class="numURL">49</a> | <a href="bibliography2.html?pageID=50&bibsort=author" class="numURL">50</a> | <a href="bibliography2.html?pageID=51&bibsort=author" class="numURL">51</a> | <a href="bibliography2.html?pageID=52&bibsort=author" class="numURL">52</a> | <a href="bibliography2.html?pageID=53&bibsort=author" class="numURL">53</a> | <a href="bibliography2.html?pageID=54&bibsort=author" class="numURL">54</a> | <a href="bibliography2.html?pageID=55&bibsort=author" class="numURL">55</a> | <a href="bibliography2.html?pageID=56&bibsort=author" class="numURL">56</a> | <a href="bibliography2.html?pageID=57&bibsort=author" class="numURL">57</a> | <a href="bibliography2.html?pageID=58&bibsort=author" class="numURL">58</a> | <a href="bibliography2.html?pageID=59&bibsort=author" class="numURL">59</a> | <a href="bibliography2.html?pageID=60&bibsort=author" class="numURL">60</a> | <a href="bibliography2.html?pageID=61&bibsort=author" class="numURL">61</a> | <a href="bibliography2.html?pageID=62&bibsort=author" class="numURL">62</a> | <a href="bibliography2.html?pageID=63&bibsort=author" class="numURL">63</a> | <a href="bibliography2.html?pageID=64&bibsort=author" class="numURL">64</a> | <a href="bibliography2.html?pageID=65&bibsort=author" class="numURL">65</a> | <a href="bibliography2.html?pageID=66&bibsort=author" class="numURL">66</a> | <a href="bibliography2.html?pageID=67&bibsort=author" class="numURL">67</a> | <a href="bibliography2.html?pageID=68&bibsort=author" class="numURL">68</a> | <a href="bibliography2.html?pageID=69&bibsort=author" class="numURL">69</a> | <a href="bibliography2.html?pageID=70&bibsort=author" class="numURL">70</a> | <a href="bibliography2.html?pageID=71&bibsort=author" class="numURL">71</a> | <a href="bibliography2.html?pageID=72&bibsort=author" class="numURL">72</a> | <a href="bibliography2.html?pageID=73&bibsort=author" class="numURL">73</a> | <a href="bibliography2.html?pageID=74&bibsort=author" class="numURL">74</a> | <a href="bibliography2.html?pageID=75&bibsort=author" class="numURL">75</a> | <a href="bibliography2.html?pageID=76&bibsort=author" class="numURL">76</a>"
 page="22"
 iatatest=""
 bibVar_LastIndex="880"
 searchString1="token = ''"
 HTML POST Argument Count 0
 HTML POST Argument List 
 URL Path Argument Count 2
 URL Path Argument List bibsort="author"
 pageID="22"
 CGI AUTH_TYPE 
 CGI CONTENT_LENGTH 
 CGI CONTENT_TYPE 
 CGI GATEWAY_INTERFACE CGI/1.1
 CGI HTTP_ACCEPT */*
 CGI HTTP_REFERER 
 CGI HTTP_USER_AGENT Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
 CGI PATH_INFO 
 CGI QUERY_STRING bibsort=author&pageID=22
 CGI REMOTE_ADDR 3.135.220.154
 CGI REMOTE_HOST 
 CGI REMOTE_IDENT 
 CGI REMOTE_USER 
 CGI REQUEST_METHOD GET
 CGI SCRIPT_NAME /bibliography2.html
 CGI SERVER_PORT 80
 CGI SERVER_PROTOCOL 
 CGI SERVER_NAME dev.accudynetest.com
 CGI SERVER_SOFTWARE MGI Apache