ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 16 of 76, ordered by
768. Dukhin, S.S., R. Miller, and G. Loglio, “Physico-chemical hydrodynamics of rising bubble,” in Drops and Bubbles in Interfacial Research, Mobius, D., and R. Miller, eds., 367-432, Elsevier, Jun 1998.
2604. Duncan, B., R. Mera, D. Leatherdale, M. Taylor, and R. Musgrove, “Techniques for characterising the wetting,. coating and spreading of adhesives on surfaces (NPL Report DEPC MPR 020),” National Physical Laboratory, Mar 2005.
1863. Duorado, F., F.M. Gama, E. Chibowski, and M. Mota, “Characterization of cellulose surface free energy,” J. Adhesion Science and Technology, 12, 1081-1090, (1998).
1902. Dupont-Gillain, C.C., Y. Adriaensen, S. Derclaye, and P.G. Rouxhet, “Plasma-oxidized polystyrene: Wetting properties and surface reconstruction,” Langmuir, 16, 8194-8200, (Oct 2000).
1428. Durkee, J.B., “Testing for cleanliness,” in Management of Industrial Cleaning Technology and Processes, 257-293, Elsevier, Oct 2006.
2024. Dutschk, V., K.G. Sabbatovskiy, M. Stolz, K. Grundke, and V.M. Rudoy, “Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces,” J. Colloid and Interface Science, 267, 456-462, (Nov 2003).
88. Dwight, D.W., “Surface analysis and adhesive bonding, I. Fluoropolymers,” J. Colloid and Interface Science, 59, 447-455, (1977).
701. Dwight, D.W., “Relationships between interfacial acid-base interactions and adhesive bond strength,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, van Ooij, W.J., and H.R. Anderson, Jr., eds., 63-80, VSP, Dec 1998.
841. Dwight, D.W., F.M. Fowkes. D.A. Cole, M.J. Kulp, et al, “Acid-base interfaces in fiber-reinforced polymer composites,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Mittal, K.L., H.R. Anderson Jr., eds., 243-256, VSP, Nov 1991.
87. Dwight, D.W., and W.M. Riggs, “Fluoropolymer surface studies,” J. Colloid and Interface Science, 47, 650-660, (1974).
455. Dyckerhoff, G.A., P. Sell, and J. Sell, “Influence of interfacial tension on adhesion,” Angewandte Makromolekulare Chemie, 21, 169, (1972).
2816. Dynes, P.J., and D.H. Kaelble, “Surface energy analysis of carbon fibers and films,” J. Adhesion, 6, 195-206, (1974).
89. Ealer, G.E., S.B. Samuels, and W.C. Harris, “Characterization of surface-treated polyethylene for water-based ink printability,” TAPPI J., 73, 145-150, (Jan 1990).
2056. Ealer, G.E., W.C. Harris, and S.B. Samuels, “Characterization of surface-treated polyethylene for water-based ink printability,” J. Plastic Film and Sheeting, 6, 17-30, (Jan 1990).
1340. Ebnesajjad, S., and C. Ebnesajjad, Surface Treatment of Materials for Adhesion Bonding, William Andrew Inc., Jun 2006.
1103. Eckert, W., “Corona- and flame treatment of polymer film, foil and paperboard,” in 2004 PLACE Conference Proceedings, TAPPI Press, Sep 2004.
1667. Eckert, W., “Improvement of adhesion on polymer film, foil and paperboard by flame treatment,” in 2003 European PLACE Conference Proceedings, TAPPI Press, 2003.
2744. Eckert, W., “Printing on metalized polymer-paperboard compounds: Improvement of adhesion by optimized flame plasma pre-treatment,” in 2005 PLACE Conference Proceedings, 591-595, TAPPI Press, Sep 2005.
2762. Eckert, W., “Comparison of corona and flame treatment of polymer film, foil and paperboard,” in 2005 European PLACE Conference Proceedings, TAPPI Press, 2005.
1737. Efimenko, K., W.E. Wallace, and J. Genzer, “Surface modification of Sylgard 184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment,” J. Colloid and Interface Science, 254, 306-315, (2002).
632. Egitto, F.D., “Plasma etching and modification of organic polymers,” Pure and Applied Chemistry, 62, 1699-1708, (1990).
1743. Egitto, F.D., L.J. Matienzo, K.J. Blackwell, and A.R. Knoll, “Oxygen plasma modification of polyimide webs: Effect of ion bombardment on metal adhesion,” J. Adhesion Science and Technology, 8, 411-433, (1994) (also in Plasma Surface Modification of Polymers: Relevance to Adhesion, M Strobel, C.S. Lyons, and K.L. Mittal, eds., p. 231-254, VSP, Oct 1994).
90. Ehrhard, P., and S.H. Davis, “Non-isothermal spreading of liquid droplets on horizontal plates,” J. Fluid Mechanics, 229, 365-388, (Aug 1991).
1651. Eick, J.D., R.J. Good, J.R. Fromer, A.W. Neumann, and L.N. Johnson, “Influence of roughness on wetting and adhesion,” J. Adhesion, 3, 23, (1971).
91. Eick, J.D., R.J. Good, and A.W. Neumann, “Thermodynamics of contact angles, II. Rough solid surfaces,” J. Colloid and Interface Science, 53, 235-248, (1975).
2823. Eisby, F., “Surface treatment for labels: Evolving technology in a changing market,” PFFC, 25, 24, (Oct 2020).
1389. Eisby, J., “Corona treatment: Why is it necessary?,” http://www.idspackaging.com/Common/Paper/Paper_262, 0.
2636. Eisby, J., “Corona treatment,” Vetaphone (http://www.vetaphone.com/technology/corona-treatment/),
2935. Eisby, J., “Dyne & decay: Extrusion, storage impact a film's 'shelf life'; time, humidity, additives contribute to contamination,” FLEXO, 47, 36-38, (Apr 2022).
2951. Eisby, J., “Dyne decay: What is it and why is it important to understand?,” PFFC, 28, 10-17, (Mar 2023).
2953. Eisby, J., “It's all about shelf life!,” Vetaphone (https://www.vetaphone.com/its-all-about-shelf-life), Apr 2022.
1162. Ekevall, E., J.I.B. Wilson, and R.R. Mather, “The effect of ammonia and sulphur dioxide gas plasma treatments on polymer surfaces,” in Medical Textiles and Biomaterials for Healthcare, Anand, S.C., J.F. Kennedy, M. Miraftab, and S. Rajendran, eds., 491-498, Woodhead Publishing, Dec 2005.
1370. El-Bahy, M.M., and M.A.A. El-Ata, “Onset voltage of negative corona on dielectric-coated electrodes in air,” J. Physics D: Applied Physics, 38, 3403-3411, (Sep 2005).
This paper describes theoretical and experimental investigations of the effect of an electrode coating on the onset voltage of a corona on negatively stressed electrodes. Dielectric-coated hemispherically-capped rod-to-plane gaps positioned in air are investigated. The onset voltage is calculated based on the self-recurring single electron avalanche developed in the investigated gap. Accurate calculation of the electric field in the vicinity of a coated rod and its correlation to the field values near a bare rod of the same radius are obtained using the charge simulation method. The calculated field values are utilized in evaluating the onset voltage of the corona. Also, laboratory measurements of the onset voltage on bare and coated electrodes are carried out. The effects of varying the field nonuniformity, the coating thickness and its permittivity on the onset voltage values are investigated. The results show that coating the electrodes with a dielectric material is effective in increasing the onset voltage of the corona on its surface. The calculated onset voltage values for coated and bare electrodes agree satisfactorily with those measured experimentally.
1791. El-shimi, A., and E.D. Goddard, “Wettability of some low energy surfaces I: Air/liquid/solid interface,” J. Colloid and Interface Science, 48, 242-248, (Aug 1974).
2332. Elliott, G.E.P., T.A. Elliott, S.M. Rowan, and I.D. Severn, “The influence of the surface coating on the wettability of nylon 6 fibres,” in Wetting, Spreading and Adhesion, Padday, J.F., ed., 391-402, Academic Press, 1978.
1917. Ellison, A.H., H.W. Fox, and W.A. Zisman, “Wetting of fluorinated solids by hydrogen-bonding liquids,” J. Physical Chemistry, 57, 622-627, (1953).
1788. Ellison, A.H., and W.A. Zisman, “Wettability studies of nylon, polyethylene terephthalate and polystyrene,” J. Physical Chemistry, 58, 503-506, (1954).
1790. Ellison, A.H., and W.A. Zisman, “Wettability of halogenated organic solid surfaces,” J. Physical Chemistry, 58, 260-265, (1954).
633. Ellul, M.D., and D.R. Hazleton, “Chemical surface treatments of natural rubber and EDPM thermoplastic elastomers: effects on friction and adhesion,” Rubber and Chemical Technology, 67, 582-601, (Sep 1994).
1907. Elsner, C., M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Applied Surface Science, 252, 3616-3624, (Mar 2006).
The article describes applications of a novel windowless argon excimer source for surface modification. Experimental results on etching of polymeric surfaces, degradation of organic surface residues, surface activation and modification of gas permeability and selectivity of polymeric membranes are presented. Moreover, radical formation from the excimer source and surface curing of liquid acrylates are examined. Typical treatment times are in the range of minutes for photolytic decomposition effects and seconds for UV curing effects. The surface modification effects induced by the argon excimer source were analysed by XPS, ESR, IR-spectroscopy, white light reflection spectroscopy, scanning electron microscopy, micro-hardness and permeation measurements.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->