ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 15 of 76, ordered by
2247. Diaz, M.E., J. Fuentes, R.L. Cerro, and M.D. Savage, “Hysteresis during contact angles measurement,” J. Colloid and Interface Science, 343, 574-583, (Mar 2010).
A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.
80. Dick, F., “How surface tension affects flexographic printing,” in FTA Annual Forum, 1978, Flexographic Technical Association, 1978.
94. Dick, F., “Apparatus and methods for determining the wettability of various substrates,” U.S. Patent 4694685, Sep 1987.
609. Dick, F., “Beta Kit Wettability Test Solutions,” Marbetech, 1989.
1960. Dillard, J.G., T.F. Cromer, C.E. Burtoff, A.J. Cosentino, R. Cline, G. Maciver, “Surface properties and adhesion of flame treated sheet molded composite (SMC),” J. Adhesion, 26, 181-198, (Oct 1988).
2698. Dillingham, G., “Film surface properties: Techniques for measurement and control of treatment level,” Converting Quarterly, 7, 58-64, (Jul 2017).
1921. Dillingham, R.G., B.R. Oakley, and D. Gilpin, “Wetting measurements for identification of specific functional groups responsible for adhesion,” J. Adhesion, 84, 1007-1022, (Dec 2008).
The relationship between adhesion and surface energy is well established for systems where specific chemical interactions are unlikely, such as pressure sensitive adhesives. However, the relationship of wetting to adhesion in chemically reactive systems is not well understood. This work used atmospheric pressure plasma treatment in air of high density polyethylene to obtain surfaces with a range of electron donor and acceptor character prior to bonding with an amine cured epoxy. Adhesion correlated strongly with the electron donating character of surface energy, and the likely functional groups responsible for this adhesion were amines created by the plasma treatment process. These results indicate that wetting measurements may be useful in detecting the specific chemical interactions important to adhesion in reactive systems.
1208. Dillingham, R.G., and B.R. Oakley, “Surface energy and adhesion in composite-composite adhesive bonds,” J. Adhesion, 82, 407-426, (Apr 2006).
In the absence of weak boundary layers, surface energy can be an excellent indicator of the suitability of a fiber-reinforced composite surface for adhesive bonding. Mechanical surface treatments such as grit blasting are effective and commonly used to prepare composite surfaces, but the roughness introduced by these treatments makes quantification of the surface energy by contact angle methods difficult. This paper shows that the diameter of a small drop of a low-viscosity fluid chosen to have surface tension characteristics very similar to the adhesive can be used as an effective predictor of adhesive bond fracture energy. This technique could form the basis of a sensitive quality assurance tool for manufacturing.
1209. Dilsiz, N., “Plasma surface modification of carbon fibers: A review,” J. Adhesion Science and Technology, 14, 975-987, (2000).
2817. Dilsiz, N., and J.P. Wightman, “Surface analysis of unsized and sized carbon fibers,” Carbon, 37, 1105-1114, (1999).
84. Dinelli, B., J.C. Jammet, and K. Kuusipalo, “Interactions between melt nature and pretreatments: key to good adhesion,” TAPPI J., 79, 189-193, (Sep 1996).
2959. Ding, L., L. Wang, L. Shao, J. Cao, and Y. Bai, “The water-dependent decay mechanism of biaxially-oriented corona-treated polyethylene terephthalate films,” RSC Advances, 4, 54805-54809, (Oct 2014).
In moist environments biaxially-oriented corona-treated polyethylene terephthalate (BOPET) film undergoes a decay in surface energy with time. This decay is a significant and well-known problem and it considerably restricts the industrial application of BOPET film. In the present study the decay effect and the dynamics of corona-treated BOPET film in an aqueous environment have been studied using water contact angle and variable angle X-ray photoelectron spectroscopy (XPS) measurements. In addition the surface decay mechanism of the corona-treated BOPET film in aqueous environments was analyzed and a molecular moving model for the decay mechanism is proposed.
2384. Dinter, P., H. Funke, and K. Matschke, “Apparatus for the surface treatment of sheet-like structures by electric corona discharge,” U.S. Patent 5024819, Jun 1991.
2105. Dinter, P., L. Bothe, J.D. Gribbin, “Process and apparatus for preparing the surface of a plastic molding by means of an electrical corona discharge,” U.S. Patent 5026463, Jun 1991.
2380. Dinter, P., L. Bothe, and J.D. Gribbin, “Process and device for surface pre-treatment of plastic by means of an electrical corona discharge,” U.S. Patent 4929319, May 1990.
2315. Dinter, P., and A. Kolbe, “Corona device and method for using same,” U.S. Patent 4153560, May 1979.
1758. Dixon, D., R. Morrison, P. Lemoine, and B.J. Meenan, “Long term effects of air dielectric barrier discharge treatment of the surface properties of ethylene vinyl acetate (EVA),” J. Adhesion Science and Technology, 22, 717-731, (2008).
2707. Dixon, D., and B. Meenan, “Atmospheric dielectric barrier discharge treatments of polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate) for enhanced adhesion,” J. Adhesion Science and Technology, 26, 2325-2337, (2012).
A critical review of published studies investigating the dielectric barrier discharge (DBD) treatment of four polymers widely employed in the packaging sector, namely: polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET) and polystyrene (PS) is presented. The DBD treatment process operates at atmospheric pressure in air, and thereby offers a low cost method of enhancing the surface properties of polymers. The method is suitable for high volume in-line applications such as packaging. It has been reported that treatment doses as low as 0.01 J/cm2 result in significant increases in surface energy and wettability, leading to enhanced adhesive bonding and printing performance. Two critical issues limit the improvements obtained via the DBD processing of polymers. Firstly, DBD processing can produce a poorly adhered surface layer of low molecular weight material, which can then interfere with bonding and printing processes. Secondly, the properties of DBD treated polymers tend to revert towards that of the untreated state during storage.
452. Dobreva, E.D., M.A. Encheva, and A.T. Trandafilov, “The effect of preliminary treatment with surfactants in the metallization of dielectrics,” Metal Finishing, 90, 29-32, (Mar 1992).
2350. Dobson, F.E., C.A. Badavos, and R.S. Flint, “Corona treating of hollow plastic,” U.S. Patent 3157785, Nov 1964.
631. Dole, M., “Surface tension measurements,” in Physical Methods in Chemical Analysis, Vol. II, Berl, W.G., ed., 305-332, 1950.
85. Domingue, J., “A dynamic approach to surface energy and wettability phenomena in flexography,” in Surface Phenomena and Additives in Water-Based Coatings and Printing Technology, Sharma, M.K., ed., 163-170, Plenum Press, Feb 1992.
2193. Donberg, D., “One new treater, many new benefits,” Paper Film & Foil Converter, 75, 0, (Dec 2001).
453. Dontula, N., C.L. Weitzsacker, and L.T. Drzal, “Surface activation of polymers using ultraviolet light activation,” in ANTEC 97, Society of Plastics Engineers, 1997.
1210. Dorai, R., and M.J. Kushner, “A model for plasma modification of polypropylene using atmospheric pressure discharges,” J. Physics D: Applied Physics, 36, 666-685, (2003).
706. Doren, A., Y. Adriaensen, and P.G. Rouxhet, “Dynamic study of wetting: changes in surface properties of polymers in response to various pH's,” Presented at First International Congress on Adhesion Science and Technology, Oct 1995.
454. Dorsey, N.E., “Ring methods for surface tension measurement,” Science, 69, 189+, (1929).
1008. Douglas, C.H., J.A. Demeter, and G.W. Sanchez, “High velocity flame surface treatment: Effect of intensity, fuel mix and web speed on surface energy,” in 1999 Polymers, Laminations and Coatings Conference Proceedings, 445-450(V1), TAPPI Press, Sep 1999.
2736. Dowling, D.P., J. Tynan, P. Ward, A.M. Hynes, J. Cullen, and G. Byrne, “Atmospheric pressure plasma treatment of amorphous polyethylene terephthalate for enhanced heatsealing properties,” Intl. J. Adhesion & Adhesives, 35, 1-8, (2012).
An atmospheric pressure plasma system has been used to treat amorphous polyethylene terephthalate (APET) to enhance its healseal properties to a polyethylene terephthalate (PET) film. The plasma treated APET sheet material was thermoformed into trays for use in the food packaging industry and heatsealed to a PET film. The heatsealing properties of the resulting package were assessed using the burst test technique. It was found that the plasma treatment significantly enhanced the adhesive properties and an increase in burst pressure from 18 to 35 kPa was observed for plasma treated food trays. The APET surface chemistry was assessed after plasma treatment where it was found that the plasma treatment had affected an increase in oxygen and an addition of nitrogen species to the polymer surface. The surface roughness (Ra) of the plasma treated samples was also observed to increase from 0.4 to 0.9 nm after plasma treatment.
1211. Drelich, J., J. Nalaskowski, A. Gosiewska, E. Beach, and J.D. Miller, “Long-range attractive forces and energy barriers in de-inking flotation: AFM studies of interactions between polyethylene and toner,” J. Adhesion Science and Technology, 14, 1829-1843, (2000).
2898. Drelich, J., J.D. Miller, and R.J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,” J. Colloid and Interface Science, 179, 37-50, (Apr 1996).
2893. Drelich, J.W., “Guidelines to measurement of reproducible contact angles using a sessile-drop technique,” Surface Innovations, 1, 248-254, (Dec 2013).
The current broad interest in wetting characterization of solid surfaces is driven by recent advances in the formulation of surfaces and coatings that are superhydrophobic, superhydrophilic, oleophobic, oleophilic and so on. Unfortunately, the contact angle data presented in many publications raise some concerns among the surface chemists and physicists who work with contact angle measurement techniques on a regular basis. In those articles, best practices are often ignored, and the data presented are limited to the static contact angles measured for small droplets, a few times smaller than typically recommended. The reported contact angles are neither advancing nor receding, and their reproducibility in different laboratories is therefore questionable. In this note, guidelines to measurements of reproducible and reliable advancing and receding contact angles are summarized.
2511. Dreux, F., S. Marais, F. Poncin-Epaillard, M. Metayer, and M. Labbe, “Surface modification by low-pressure plasma of polyamide 12 (PA12): Improvement of the water barrier properties,” Langmuir, 18, 10411-10420, (2002).
2512. Drnovska, L.L. Jr., V. Bursikova, J. Zemek, and A.M. Barros-Timmons, “Surface properties of polyethylene after low-temperature plasma treatment,” Colloid and Polymer Science, 281, 1025-1033, (Oct 2003).
2049. Drummond, C.J., G. Georgaklis, and D.Y.C. Chen, “Fluorocarbons: Surface free energies and van der Waals interaction (letter),” Langmuir, 12, 2617-2621, (May 1996).
86. Dryden, P., J.H. Lee, J.M. Park, and J.D. Andrade, “Modeling of the Wilhelmy contact angle method with practical sample geometries,” in Polymer Surface Dynamics, 9-24, Plenum Press, 1988.
2492. Dubreuil, M., E. Bongaers, and D. Vandgeneugden, “Adhesion improvement of polypropylene through aerosol assisted plasma deposition at atmospheric pressure,” in Atmospheric Pressure Plasma Treatment of Polymers, Thomas, M., and K.L. Mittal, eds., 275-298, Scrivener, 2013.
2537. Dubreuil, M.F., and E.M. Bongaers, “Use of atmospheric pressure plasma technology for durable hydrophilicity enhancement of polymeric substrates,” Surface and Coatings Technology, 202, 5036-5042, (Jul 2008).
Parallel plates dielectric barrier discharge (DBD) at atmospheric pressure has been investigated to modify and functionalize the surface of different polymer substrates, e.g. polyolefins, poly(ethylene terephtalate), polyamide, in order to enhance their hydrophilic properties. Surface properties have been altered to meet the requirements of specific applications by introducing the appropriate functionalities through the use of either acetic acid or ethyl acetate. The coatings have been characterized through wettability measurements, labeling coupled with X-Ray photoelectron spectroscopy, and IR spectroscopy.
1440. Duca, M.D., C.L. Plosceanu, and T. Pop, “Surface modifications of polyvinylidene fluoride (PVDF) under radiofrequency (RF) argon plasma,” Polymer Degradation and Stability, 61, 65-72, (1998).
1349. Dukes, W.A., and A.J. Kinloch, “Preparing low-energy surfaces for bonding,” in Developments in Adhesives, Vol. 1, Wake, W.C., ed., Applied Science Publishers, 1977.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->