Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3022 results returned
showing result page 12 of 76, ordered by
 

443. Colligan, J.S., W.A. Grant, and J.L. Whitton, eds., Technological Aspects of Surface Treatment and Analysis, Pergamon Press, 1984.

64. Collins, A.G.S., A.C. Lowe, and D. Nicholas, “An analysis of PTFE surfaces modified by exposure to glow discharges,” European Polymer J., 9, 1173-1185, (1973).

444. Collins, W.M., “Classical review of corona treatment,” in 1983 Coextrusion Conference Proceedings, 47+, TAPPI Press, 1983.

1400. Collins, W.M., “Recent technological advances in corona treating,” in 1981 Paper Synthetics Conference Proceedings, 129, TAPPI Press, 1981.

1043. Colvin, R., “Novel plasma method treats polymer rather than part,” Modern Plastics Intl., 29, 33-34, (Apr 1999).

2769. Combe, E.C., B.A. Owen, and J.S. Hodges, “A protocol for determining the surface free energy of dental materials,” Dental Materials, 20, 262-268, (Mar 2004).

The purpose of this study was to develop a standard methodology for measuring the surface free energy (SFE), and its component parts, of dental biomaterials. The contact angle of each of four samples of two materials--low density polyethylene and poly(methyl methacrylate)--was measured three times in each of six liquids (1-bromonaphthalene, diiodomethane, ethylene glycol, formamide, glycerol and distilled water). Critical surface tension estimates were obtained from Zisman plots. Data were then analyzed by the least-squares method to estimate the components of SFE. Estimates were also made for each of 12 liquid triplets, and by maximum likelihood and Bayesian analyses. The use of liquid triplets could yield misleading estimates of the components of SFE. A testing protocol is suggested in which multiple test liquids are used, and multiple methods of statistical analyses employed. SFE is important, in that high SFE is desirable when adhesion is required, but undesirable if plaque resistance is needed. Methodology that avoids some of the limitations of existing studies has been proposed.

1420. Combellas, C., A. Fuchs, F. Kanoufi, and M.E.R. Shanahan, “The detailed structure of a perturbed wetting triple line on modified PTFE,” in Contact Angle, Wettability and Adhesion, Vol. 4, Mittal, K.L., ed., 43-59, VSP, Jul 2006.

628. Comyn, J., “Keynote overview on surface treatment for adhesive bonding,” Construction and Building Materials, 2, 210-215, (Dec 1988).

1366. Comyn, J., L. Mascia, G. Xiao, and B.M. Parker, “Plasma-treatment of polyetheretherketone (PEEK) for adhesive bonding,” Intl. J. Adhesion and Adhesives, 16, 97-104, (May 1996).

1205. Comyn, J., L. Mascia, X. G., and B.M. Parker, “Corona-discharge treatment of polyetheretherketone (PEEK) for adhesive bonding,” Intl. J. Adhesion and Adhesives, 16, 301-304, (Nov 1996).

65. Conners, T.A., and S. Banerjee, eds., Surface Analysis of Paper, CRC Press, Jul 1995.

2484. Coombes, N., “Vetaphone, along with Coating Plasma Industrie (CPI) have created EASI-plasma, a new product for the coating, laminating and printing industries,” http://www.labelandnarrowweb.com/contents/view_online_exclusive, 2010.

2629. Coombes, N., “Corona control: Learning to understand the treatment basics,” Flexo, 41, 26-27, (Feb 2016).

66. Coopes, I.H., and K.J. Gifkins, “Gas plasma treatment of polymer surfaces,” J. Macromolecular Science, A17, 217-226, (1982).

67. Corbin, G.A., R.E. Cohen, and R.F. Baddour, “Kinetics of polymer surface fluorination: elemental and plasma-enhanced reactions,” Polymer, 23, 1546-1548, (1982).

68. Cormia, R.D., “Surface Modification and Characterization of Biomaterials,” Surface Sciences, 1990.

935. Cormia, R.D., “Use plasmas to re-engineer your advanced materials,” Research & Development, (Jul 1990).

993. Corn, S., K.P. Vora, M. Strobel, and C.S. Lyons, “Enhancement of adhesion to polypropylene films by chlorotrifluoromethane plasma treatment,” J. Adhesion Science and Technology, 5, 239-245, (1991).

832. Correia, N.T., J.J. Moura-Ramos, B.J.V. Saramago, and J.C.G. Calado, “Estimation of the surface tension of a solid: Application to a liquid crystalline polymer,” J. Colloid and Interface Science, 189, 361-369, (May 1997).

1697. Costanzo, P.M., R.F. Giese, and C.J. van Oss, “Determination of the acid-base characteristics of clay mineral surfaces by contact angle measurements - Implication for the adsorption of organic solutes from aqueous media,” J. Adhesion Science and Technology, 4, 267-275, (1990).

2948. Couch, M., W. Lee, and M. Plantier, “Best practices for integrating plasma and flame surface treaters,” Plastics Decorating, 28-30, (Apr 2023).

2672. Couchie, M., “Tips for selecting coating chemistries for hard-to-coat plastics,” Plastics Engineering, 72, 40-43, (Nov 2016).

2428. Courval, G.J., D.G. Gray, and D.A.I. Goring, “Chemical modification of polyethylene surfaces in a nitrogen corona,” J. Polymer Science: Polymer Letters Edition, 14, 231-235, (Apr 1976).

946. Cox, E.O., “Should water or UV be in your clean air future?,” Flexo, 19, 12-16, (Sep 1994).

2764. Cramm, R.H., “The influence of processing conditions on the hot tack of polyethylene extrusion coatings,” in 1988 Polymers, Laminations and Coatings Conference Proceedings, 35-39, TAPPI Press, 1988 (also in TAPPI J., V. 72, p. 185-189, Mar 1989).

445. Cramm, R.H., and D.V. Bibee, “Theory and practice of corona treatment for improvement of adhesion,” in 1981 Paper Synthetics Conference Proceedings, 1-11, TAPPI Press, 1981 (also in TAPPI J., V. 65, p. 75-78, Aug 1982).

1073. Critchlow, G.W., C.A. Cottam, D.M. Brewis, and D.C. Emmony, “Further studies into the effectiveness of carbon dioxide-laser treatment of metals for adhesive bonding,” Intl. J. of Adhesion and Adhesives, 17, 143-150, (May 1997).

1749. Crocker, G.J., “Elastomers and their adhesion,” Rubber Chemistry and Technology, 42, 30+, (Feb 1969).

1470. Crolius, V.G., W.E. Eberling, and R.C. Parsons, “The effect of processing variables on the adhesion strength of polyethylene coated aluminum foil,” TAPPI J., 45, 351-356, (May 1962).

2530. Crutchley, E.B., Innovation Trends in Plastics Decoration and Surface Treatment: Decorative Effects on Moulded Plastics, Rapra Publishing, 2014.

1953. Cueff, R., G. Baud, J.P. Besse, M. Jacquet, and M. Benmalek, “Surface free energy modification of PET by plasma treatment - influence on adhesion,” J. Adhesion, 42, 249-254, (Oct 1993).

1640. Cui, N.-Y., C.A. Anderson, B.J. Meenan, and N.M.D. Brown, “Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement,” Applied Surface Science, 253, 3865-3871, (Feb 2007).

Surface properties of a Melinex 800 PET polymer material modified by an atmospheric-pressure air dielectric barrier discharge (DBD) have been studied using X-ray photoelectron microscopy (XPS) and contact angle measurement. The results show that the material surface treated by the DBD was modified significantly in chemical composition, with the highly oxidised carbon species increasing as the surface processing proceeds. The surface hydrophilicity was dramatically improved after the treatment, with the surface contact angle reduced from 81.8° for the as-supplied sample to lower than 50° after treatment. Post-treatment recovery effect is found after the treated samples were stored in air for a long period of time, with the ultimate contact angles, as measured, being stabilised in the range 58–69° after the storage, varying with the DBD-treatment power density. A great amount of the C–O type bonding formed during the DBD treatment was found to be converted into the CDouble BondO type during post-treatment storage. A possible mechanism for this bond conversion has been suggested.

3001. Cui, N.-Y., D.J. Upadhyay, C.A. Anderson, and N.M.D. Brown, “Study of the surface modification of a nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge,” Surface and Coatings Technology, 192, 94-100, (Mar 2005).

A Nylon-6,6 film has been treated using an atmospheric pressure air dielectric barrier discharge (DBD). The resultant surface modifications were studied using X-ray photoelectron spectroscopy (XPS), contact angle measurement and secondary ion mass spectrometry (SIMS). The surface oxidation arising in the DBD discharge was found to arise in two stages: in the first stage, the creation of the carbon sites singly bonded to oxygen is dominant, the second stage leads to further conversion of such lightly oxidised carbons to those more heavily oxidised. The marked increase found in the hydrophilicity of the surface post-treatment is in the main believed to be associated with the earlier outcome. Partial recovery of the surface contact angle values is found for the treated samples following extended storage in ambient air. The final contact angle obtained for the treated samples was ∼50°, still reduced significantly from that of 83.5° for the untreated material.

1367. Cui, N.Y., and N.M.D. Brown, “Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma,” Applied Surface Science, 189, 31-38, (Apr 2002).

2748. Culbertson, E., “Metal adhesion to PET film,” in 2007 PLACE Conference Proceedings, 243-246, TAPPI Press, Sep 2007.

446. Culbertson, E.C., and D. Rudd, “Adhesion on plastic substrates,” Polymer Paint Colour Journal, 181, 538-541, (Sep 1991).

2566. Cushing, G., “Balancing adhesion and slip properties in aqueous heat seal coatings,” in 2008 PLACE Conference Proceedings, 53-60, TAPPI Press, Sep 2008.

2766. Custodio, J., J. Broughton, H. Cruz, and P. Winfield, “Activation of timber surfaces by flame and corona treatments to improve adhesion,” International J. of Adhesion and Adhesives, 29, 167-172, (Mar 2009).

Long-term durability of a structural adhesive joint is an important requirement, because it has to be able to support the required design loads, under service conditions, for the planed lifetime of the structure. One way of improving bond durability is through the use of surface treatments prior to bonding, which will activate the adherends’ surface, making it more receptive to the adhesive. In this study, the effects of two surface pre-treatments (corona discharge and flame ionization) on three timbers (maritime pine, iroko, and European oak) were evaluated quantitatively through contact angle measurements. These measurements allowed the determination of the changes in the timber surface thermodynamic characteristics, thus indicating which pre-treatment performed better. The results showed that both techniques increased each timber's surface free energy, which could translate into a durability enhancement of bonded joints. Overall, the corona-discharge treatment looks more promising, since this treatment leads to a bigger increase in the timber's surface energy, especially in its polar component, whilst also tended to be less species specific, less susceptible to variation, and the treatment effects lasted longer for this type of treatment.

2863. Cwikel, D., Q. Zhao, C. Liu, X. Su, and A. Marmur, “Comparing contact angle measurements and surface tension assessments of solid surfaces,” Langmuir, 26, 15289-15294, (2010).

Four types of contact angles (receding, most stable, advancing, and “static”) were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The “static"” CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

1988. Dabros, T., and T.G.M. Van de Ven, “On the effects of blocking and particle detachment on coating kinetics,” J. Colloid and Interface Science, 93, 576-579, (Jun 1983).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->