Surface Energy Data for Hexatriacontane, CAS #630-06-8 | Source ^(a) | Mst. Type ^(b) | Data [©] | Comments ^(d) | |--|------------------------------|---|--| | Fox, 1952 ⁽¹¹⁾
Fox, 1952 ⁽¹¹⁾ | Critical ST
Contact angle | $\gamma_{\rm c}$ = 21 mJ/m²; no temp cited $\theta_{\rm W}^{\ \ Y}$ = 111°; 20°C | Test liquids not known. Crystal platelets grown in pure <i>n</i> -hexane and stored under N2 until tested. | | Hellwig, 1968 ⁽¹⁶⁴⁾ | Contact angle | $\theta_W^{\ Y} = 105.3^{\circ}; 25^{\circ}C$ | | | Clouet, 1994 ⁽¹¹⁴⁾ | Contact angle | $\theta_{W}^{A} = 109^{\circ}; 23^{\circ}C$ | Crystallized in distilled hexane and stored under argon until tested. | | Shafrin, 1963 ⁽²⁰¹⁾ | Contact angle | $\gamma_s=19.1~mJ/m^2~(\gamma_s^{~d}=18.9,~\gamma_s^{~p}=0.2);$ no temp cited | Test liquids not known. | | Hellwig, 1968 ⁽¹⁶⁴⁾ | Contact angle | $\gamma_{\rm s} = 19.5 \text{ mJ/m}^2; 25^{\circ}\text{C}$ | Test liquids not known. | | Kitazaki, 1972 ⁽¹⁹¹⁾ | Contact angle | $\gamma_s^{\rm d} = 20.6 \ mJ/m^2 \ (\gamma_s^{\rm d} = 20.6, \ \gamma_s^{\rm p} = 0.0);$ no temp cited | Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters. | | Wu, 1979 ⁽⁴⁵⁾ | Contact angle | $\gamma_{\rm s} = 19.1 {\rm mJ/m^2}; 20^{\circ}{\rm C}$ | Test liquids not known, by geometric mean equation. | | Wu, 1979 ⁽⁴⁵⁾ | Contact angle | $\gamma_s = 23.6 \text{ mJ/m}^2$; 20°C | Test liquids not known, by harmonic mean equation. | | Wu, 1979 ⁽⁴⁵⁾ | Contact angle | $\gamma_c = 23.0 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Test liquids not known; calculated by the equation of state method. | | Spelt, 1996 ⁽¹⁷⁷⁾ | Contact angle | $\gamma_c=19.8~mJ/m^2;~20^{\circ}C$ | Re-calculated by equation of state method from data produced by Hellwig, 1968 ⁽¹⁶⁴⁾ . | | Wang, 1997 ⁽²⁶⁰⁾ | Contact angle | $\gamma_s = 20.4 \text{mJ/m}^2$; no temp cited | Test liquids not known. | | Della Volpe, 2000 ⁽¹⁶³⁾ | Contact angle | $\gamma_s = 20.5 \text{ mJ/m}^2$; no temp cited | Re-calculated from data produced by Hellwig, 1968 ⁽¹⁶⁴⁾ . | | Kwok, 2000 ⁽¹⁶⁶⁾ | Contact angle | $\gamma_c = 19.6 \text{ mJ/m}^2$; no temp cited | Re-calculated by equation of state method from data produced by Fox, 1952 ⁽¹¹⁾ . | | Kwok, 2000 ⁽¹⁶⁶⁾ | Contact angle | γ_c = 20.3 mJ/m²; no temp cited | Re-calculated by equation of state method from literature data. | | Kwok, 2000 ⁽¹⁶⁶⁾ | Contact angle | γ_c = 19.7 mJ/m²; no temp cited | Re-calculated by alternate equation of state method from literature data. | | Wu, 1989 ⁽²⁷³⁾ | From polymer melt | $\gamma_s=31.4~mJ/m^2~(\gamma_s^{~d}=31.4,\gamma_s^{~p}=0.0);20^{o}C$ | Direct measurement of polymer melt extrapolated to 20°C. M=507. | | Wu, 1979 ⁽⁴⁵⁾ | Calculated | $\gamma_s = 31.4 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Calculated from liquid homologs. |