Surface Energy Data for Hexatriacontane, CAS #630-06-8

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Fox, 1952 ⁽¹¹⁾ Fox, 1952 ⁽¹¹⁾	Critical ST Contact angle	$\gamma_{\rm c}$ = 21 mJ/m²; no temp cited $\theta_{\rm W}^{\ \ Y}$ = 111°; 20°C	Test liquids not known. Crystal platelets grown in pure <i>n</i> -hexane and stored under N2 until tested.
Hellwig, 1968 ⁽¹⁶⁴⁾	Contact angle	$\theta_W^{\ Y} = 105.3^{\circ}; 25^{\circ}C$	
Clouet, 1994 ⁽¹¹⁴⁾	Contact angle	$\theta_{W}^{A} = 109^{\circ}; 23^{\circ}C$	Crystallized in distilled hexane and stored under argon until tested.
Shafrin, 1963 ⁽²⁰¹⁾	Contact angle	$\gamma_s=19.1~mJ/m^2~(\gamma_s^{~d}=18.9,~\gamma_s^{~p}=0.2);$ no temp cited	Test liquids not known.
Hellwig, 1968 ⁽¹⁶⁴⁾	Contact angle	$\gamma_{\rm s} = 19.5 \text{ mJ/m}^2; 25^{\circ}\text{C}$	Test liquids not known.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_s^{\rm d} = 20.6 \ mJ/m^2 \ (\gamma_s^{\rm d} = 20.6, \ \gamma_s^{\rm p} = 0.0);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_{\rm s} = 19.1 {\rm mJ/m^2}; 20^{\circ}{\rm C}$	Test liquids not known, by geometric mean equation.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_s = 23.6 \text{ mJ/m}^2$; 20°C	Test liquids not known, by harmonic mean equation.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_c = 23.0 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Spelt, 1996 ⁽¹⁷⁷⁾	Contact angle	$\gamma_c=19.8~mJ/m^2;~20^{\circ}C$	Re-calculated by equation of state method from data produced by Hellwig, 1968 ⁽¹⁶⁴⁾ .
Wang, 1997 ⁽²⁶⁰⁾	Contact angle	$\gamma_s = 20.4 \text{mJ/m}^2$; no temp cited	Test liquids not known.
Della Volpe, 2000 ⁽¹⁶³⁾	Contact angle	$\gamma_s = 20.5 \text{ mJ/m}^2$; no temp cited	Re-calculated from data produced by Hellwig, 1968 ⁽¹⁶⁴⁾ .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_c = 19.6 \text{ mJ/m}^2$; no temp cited	Re-calculated by equation of state method from data produced by Fox, 1952 ⁽¹¹⁾ .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	γ_c = 20.3 mJ/m²; no temp cited	Re-calculated by equation of state method from literature data.
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	γ_c = 19.7 mJ/m²; no temp cited	Re-calculated by alternate equation of state method from literature data.
Wu, 1989 ⁽²⁷³⁾	From polymer melt	$\gamma_s=31.4~mJ/m^2~(\gamma_s^{~d}=31.4,\gamma_s^{~p}=0.0);20^{o}C$	Direct measurement of polymer melt extrapolated to 20°C. M=507.
Wu, 1979 ⁽⁴⁵⁾	Calculated	$\gamma_s = 31.4 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated from liquid homologs.